IXXat’

BY HMS NETWORKS

VCI: C-API for CAN-FD

SOFTWARE DESIGN GUIDE

4.02.0250.20023 1.3 en-US ENGLISH

17
Hﬂ’s Connecting Devices"

Important User Information

Disclaimer

The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any
errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development.
The information in this document shall therefore not be construed as a commitment on the part of HMS Networks
and is subject to change without notice. HMS Networks makes no commitment to update or keep current the
information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data,
examples or illustrations included in this document nor for any damages incurred during installation of the product.
Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product
is used correctly in their specific application and that the application meets all performance and safety requirements
including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances
assume liability or responsibility for any problems that may arise as a result from the use of undocumented features
or functional side effects found outside the documented scope of the product. The effects caused by any direct or
indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability
issues.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

T USEE GUIOE cuireeeeierreneeiiererneeienressessessesssssersssssssssessssssssessesssssssssssssssnsssssssssssssnssnsssssnssnsesssnsnnes 5

1.1 REIAtEA DOCUMEBNES ...ttt ettt ettt et et et e et et e e et e e e e e e e ae e eaneeenns 5
1.2 DOCUMENT HISTOTY ettt e e e e e e eenes 5
1.3 L0071V 7= g1 o T - 6
14 (G [o 1T [oY PSPPI 7

2 SYSEEM OVEIVIEW .. cieeeeeeeeiiiicciiiiiieeeneneneisieeerintsesnsssssssssssesssssssnsnsssssssssssssssssnnnssssssssssssssssnnnns O

2.1 Subcomponents and Functions of the Programming Interface...........cooooviiiiiiiiiiiiiiiinnene 9

2.2 PrOgramMMINgG EXaM IS . . ittt e e e e aas 9

3 Device Management and DeViCe ACCESS......ccccceeeereererrsnneeeerecccsssnsensessesesssassessessesssssanaases 10

3.1 Listing AVailable DEVICES.ottt e e e aaaas 11
3.2 Searching INAiVidUAl DEVICESu.vnieiiieiie et e e e e e e e et e e et e e e eneanen 12
3.3 ACCESSING DBVICES 1 uiuitititittet it ettt ettt e ettt ettt et et e e et et en e et et e e eat et eanaaaanas 13

4 ACCESSING the BUSccceeeeeeeirreeeeetieeecirssneeeeeeecesssnseeeesesssssssnsessessssssssansessesesssssnsssessesssssananees 14

4.1 ACCESSING The CAN BUS ...oniiiii e e et et e e e e e e e naes 14
41.1 MESSAZE ChaNNEIS . .. et e e e e e 15
4.1.2 L0 o I T PP 20
4.1.3 LAY TT Y- Y o{ S S T N 27
4.1.4 Cyclic TransSMITtiNG List. one ottt eeas 30
4.2 ACCESSING ThE LIN BUS ..ueiiitiiite ittt e e et e e et e e et e e e e e e e et e e eaaenennas 33
421 MESSABE IMIONITOISe ettt ettt ettt e 33
4.2.2 (60 014 4'o] U o P 36

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

LI V1 Yot 10T 13U 1)

5.1 GENEIAl FUNCHIONS .. et ettt ettt et et e et e e et e e en e eaeanes 39
5.1.1 VOIINTEIANIZE et e e e 39
5.1.2 VOIGEEVISION. L.ttt e 39
5.1.3 VEIFOrMAtEITOrA L. 40
514 VCIFOrMAtErTOrW. .. e 40
5.1.5 1Yol D1y o] = 1Y 2 o T 41
5.1.6 V111 o] 1Y g o T O 41
5.1.7 VOICIEAtELUIT . ..ottt e 42
5.1.8 (Y7 1 U T I o T o - £ P 42
5.1.9 (Y7 1 U o I o T o - T P 43
5.1.10 (Ve[0T e KU I« OO PTPRRPN 43
5.1.11 VEIChAITOLUIAW .ot e e e ettt e ettt e eeaens 44
5.1.12 VOIGUIATOCRAIA L. ettt eaaas 44
5.1.13 VCIGUIATOCNAIW Lot e e et ettt e et et e e te et e st e e e e aaeenaeans 45
5.1.14 1Yol [@1 T T o LGV o 45
5.1.15 VEICRAITOGUILW ...ttt e e e et ettt et e et ettt e eaens 46
5.2 Functions for the Device Management.........ocuiiu it 47
5.2.1 Functions for Accessing the DeViCe LiSto.v.uieiiiiii e e 47
5.2.2 FUNCtions for ACCESSING VI DEVICES ...e.uuiitiitt ittt e e e enaeas 52
53 FUNCLIONS fOr CAN ACCESS .. enenetetei ettt ettt et e ettt et et et et et e e et e en e e b eaeens 55
531 (00T T¢I o PP 55
5.3.2 MESSAZE ChanNEl ... et e e e e e 63
5.3.3 (@Yol ol I 1 0 .41) 78
5.4 FUNCEIONS FOr LIN ACCESS ... ettt ettt ettt et et et ettt e e e et e e e e eans 84
54.1 (00T Y o I o PP 84
5.4.2 LAY LT T =1V o] oV o 88

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

6 DAt TYPES ettt st rresassse s ssese s e asansnssssssssessesssssansnssnsssesessansnnnnnns DD

6.1 VCI-SPECITIC DAt TYPES «.eteteitieti ettt ettt ettt et et et et et a et et et e e e e e e e et e enenaees 95
6.1.1 Nl D . et 95
6.1.2 VECIVERSIONINFO. ..ttt ettt ettt ettt ettt e et aee e eaaeesaaeens 95
6.1.3 VCILICINFO . ottt et ettt e et ettt et ettt et e r e e e ane e 96
6.1.4 VCIDRIVERINFO ..ttt e et e e et e et ettt e et et e e et e e et e e eee e eaneeeaneens 96
6.1.5 VCIDEVICEINFO. . . .ttt ettt et ettt et ettt et et et e e et e e e e e eee e eaneeeaeeennn 97
6.1.6 VCIDEVICECAPS ..ot ettt ettt ettt 97
6.1.7 VCIDEVRTINFO ..ttt ettt e e e ettt et et ettt e r e e e aaeeaaens 98
6.2 CAN-SPECITIC DAt Ty PO eutiniieitet ittt et et e e e et e e et et et e e e et e e et e e et e et aeaetarneraaneaaanns 99
6.2.1 L A I 99
6.2.2 CANCAPABILITIESZ. . ottt e ettt et et ettt ettt et ae e eeaes 99
6.2.3 CANINITLINEZ ..ottt ettt et et ettt ettt ettt et e e e aneeaas 102
6.2.4 AN LINE S T AT U S 2 ittt et ettt ettt et ettt et e e e e e e e e st e e aaeeaneeanas 103
6.2.5 CAN CHAN S T ATUS 2 ..ttt ettt ettt e et ettt et e et e et e e e e e enaeeanas 104
6.2.6 CANRTINFO ettt ettt ettt ettt e ae e eaee s 104
6.2.7 CANSCHEDULERSTATUSZ L.ttt et et ettt ettt e e e aas 105
6.2.8 CANMSGINFO L.ttt e e ettt e et e et e sttt et e e e e ettt e e eaaeas 105
6.2.9 L7 A Y C 2 N 108
6.2.10 CANCYCLICTXMSGZ. . .ottt et ettt et e ettt e e et ettt e aae e aaaeenas 109
6.3 LIN-SPECITIC DAt TYPES - eueneneteetei ettt ettt et ettt ettt ettt e et et et e e e e e e e e et e enaennes 109
6.3.1 LIN TN T LINE .ottt ettt ettt et et e e e et e et e et e e e e e et e snee e aneeeannas 109
6.3.2 LINCAPABILITIES ...ttt ettt ettt ettt e et e et e et e et e s e e e aeeeanaas 110
6.3.3 LA A I U 111
6.3.4 LINIMIONITOR ST AT U S ettt et ettt ettt e et e et e e e e e et e st e e aaneeeanaes 111
6.3.5 L1117 P 112

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

This page intentionally left blank

User Guide 5(114)

1 User Guide

Please read the manual carefully. Make sure you fully understand the manual before using the

product.

1.1 Related Documents
Document Author
VCI: C++ Software Version 4 Software Design Guide HMS
VCI Driver Installation Guide HMS

1.2 Document History
Version Date Description
1.0 January 2018 First version
1.1 September 2018 Minor changes, added information about reception time of a CAN message
1.2 May 2019 Layout and terminology changes
13 October 2021 Corrections specifying the bit rate

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

User Guide 6(114)

13 Conventions
Instructions and results are structured as follows:
> instruction 1
> instruction 2
- resultl
- result2
Lists are structured as follows:
e jteml
e jtem2

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

This font is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Conventions, p. 6

This is an external link (URL): www.hms-networks.com

@ This is additional information which may facilitate installation and/or operation.

' This instruction must be followed to avoid a risk of reduced functionality and/or damage
° to the equipment, or to avoid a network security risk.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

http://www.hms-networks.com

User Guide

7 (114)

1.4 Glossary

Abbreviations

BAL
CAN
FIFO
GUID
LIN
Vvl
VCIID

VCI server

VCI: C-API for CAN-FD Software Design Guide

Bus Access Layer

Controller Area Network

First In/First Out Memory
Globally unique ID

Local Interconnect Network
Virtual Communication Interface
VCI specific unique ID

VCI system service

4.02.0250.20023 1.3 en-US

System Overview

8 (114)

2

System Overview

The VCI (Virtual Communication Interface) is a system extension, that provides common access
to different devices by HMS Industrial Networks for applications. In this guide the C
programming interface (CAN FD) VCINPL2.DLL is described. The programming interface connects
the VCl server and the application programs using predefined components, interfaces and

functions.
VCl Applications
" canAnalyser3 mini VCI Device Server Control Application
w =
w ||l 21 = || = g
g |l a
all € |2] z || &
ellsllelle]l 3] 2|2
BllaEll=zll=+||Z2]|| VCIDevice Service
Slhazllgllgllzl=]8
]
=1 VCl UserMode VCl UserMode
Driver Driver
{wcid118wx.dll) { VCIa112w dll)
CAN / CAN-FD/ LIN
C++API
iapi.dll
User Mode doeall)
[1]
Kernel Mode ver i
System Service TCR/IP Stack Bluetooth Stack
(vcisrv.sys)
VCl KerneMode VClKemelMode VCl KerneMode
Driver (vcid11dwx, Driver Driver
vCid116wx) (vcid11llwx sys) (wcid005wx. sys)
[1
Hardware
Active Passive
USB Interfaces PCI/PCle Interfaces | | PCI/PCle Interfaces T&ﬁ;ﬁiﬁ?s ?r:::;:‘;z
{ USB-to-CAN V2,) { CAN-IB2xx, | CAN-1B1xx,) . G)
CAN-1B4xx, ...) CAN-1B3xx, ..) - r
Mot part of this installation.
A separate installation is available
Fig. 1 System structure and components

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

System Overview

9 (114)

Subcomponents and Functions of the Programming Interface

Native VCI programming interfaces (VCINPL2.DLL)

Device management and
device access

CAN control

CAN message channels

Cyclic CAN transmit list

vciEnumDeviceOpen

canControlOpen

canChannelOpen

canSchedulerOpen

vciEnumDeviceClose

canControlClose

canChannelClose

canSchedulerClose

vciEnumDeviceNext

canControlGetCaps

canChannelGetCaps

canSchedulerGetCaps

vciEnumDeviceReset

canControlGetStatus

canChannelGetStatus

canSchedulerGetStatus

vciEnumDeviceWaitEvent

canControlDetectBitrate

canChannelGetControl

canSchedulerActivate

vciFindDeviceByHwid

canControllnitialize

canChannelinitialize

canSchedulerReset

vciFindDeviceByClass

canControlReset

canChannelGetFilterMode

canSchedulerAddMessage

vciSelectDeviceDlg

canControlStart

canChannelSetFilterMode

canSchedulerRemMessage

vciDeviceOpen

canControlGetFilterMode

canChannelSetAccFilter

canSchedulerStartMessage

vciDeviceOpenDlg

canControlSetFilterMode

canChannelAddFilterlds

canSchedulerStopMessage

vciDeviceClose

canControlSetAccFilter

canChannelRemFilterlds

vciDeviceGetInfo

canControlAddFilterlds

canChannelActivate

vciDeviceGetCaps

canControlRemFilterlds

canChannelPeekMessage

canChannelPostMessage

canChannelWaitRxEvent

canChannelWaitTxEvent

canChannelReadMessage

canChannelSendMessage

LIN control

LIN message monitors

linControlOpen

linMonitorOpen

linControlClose

linMonitorClose

linControlGetCaps

linMonitorGetCaps

linControlGetStatus

linMonitorlnitialize

linControllnitialize

linMonitorActivate

linControlReset

linMonitorPeekMessage

linControlStart

linMonitorWaitRxEvent

linControlWriteMessage

linMonitorReadMessage

Programming Examples

With installing the VCI driver, programming examples are automatically installed in c:\Users
\Public\Documents\HMS\Ixxat VCI 4.0\Samples\Npl2.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Device Management and Device Access

0 (114)

3 Device Management and Device Access

The device management provides listing of and access to devices that are logged into the VCI

server.

| vciEnumDeviceNext |

| vciEnumDeviceWaitEvent |

| vciEnumDeviceClose

of list

closes device list

| vciEnumDeviceOpen '\

vciFindDeviceByHwid

vciFindDeviceByClass \
searches for devices

opens device Isit

provides next entry

Device List

waits on changes of | vciEnumDeviceReset |

the list

resets the index list

vciDeviceOpen
vciDeviceOpenDlg

opens an device of the list

PC/104-PCI

—
USB-to-CAN ‘//—I vciDeviceClose

with certain properties

closes an opened device

P vciDeviceGetInfo

vciSelectDeviceDlg I

displays a dialog
for device selection

“determines information of vciDeviceGetCaps
an opened device

change of the list

VCI Server

User Mode
Kernel Mode
Server Login
PC-104-PCI
Fig. 2 Device management components

Server Logoff

USB-to-CAN

The VCI server manages all devices in a system-wide global device list. When the computer is
booted or a connection between device and computer is established the device is automatically
logged into the server. If a device is no longer available, for example, because the connection is
interrupted, the device is automatically removed from the device list.

Hot plug-in devices like USB devices are logged in with connecting and logged out with
disconnecting. The devices are also logged in or off when the operation system activates or

deactivates a device driver in the device manager.

Main Information about a Device

Interface

Type

Description

VciObjectld

Unique ID of device

When a device logs in, it is allocated a system-wide
unique ID (VCIID). This ID is required for later access to
the device.

DeviceClass

Device class

All device drivers identify their supported device class
by a worldwide unique ID (GUID). Different devices
belong to different device classes, e. g. the USB-to-CAN
belongs to a different device class than PC-104/PCI.

UniqueHardwareld

Hardware ID

Each device has a unique hardware ID. The ID can be
used to differentiate between two interfaces or to
search for a device with a certain hardware ID.
Remains after restart of the system. Because of that it
can be stored in the configuration file and enables
automatic configuration of the application after
program and system start.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Device Management and Device Access 11 (114)

3.1 Listing Available Devices

> To access the global device list, call the function vciEnumDeviceOpen.
- Returns handle to the global device list.

With the handle information about available devices can be accessed and changes in the device
list can be monitored. There are different possibilities to navigate in the device list.

Requesting Information About Devices in Device List
The application must provide the required memory as a structure of type VCIDEVICEINFO.
> Call the function vciEnumDeviceNext.

- Returns information about a device in the device list.

- With each call the internal index is incremented.

> To get information about the next device in the device list, call the function
vciEnumDeviceNext again.

- With each call information about the next device in the list is shown.

- When the list is run through, value VCI_E NO_MORE_ITEMS is returned.

Reset Internal List Index
» Call the function vciEnumDeviceReset.
- Internal index of device list is reset.

- Subsequent call of function vciEnumDeviceNext provides information about the
first device in the device list again.

Monitoring Changes in the Device List

» Call the function vciEnumDeviceWaitEvent and specify handle of the device list in
parameter hEnum.

-> If the content of the device list changes, the function returns the value VCI_OK.

- Other return values indicate an error or signal that the waiting time specified for a
function call is exceeded.

Closing Device List

To save system resources, it is recommended to close the device list if no further access is
necessary.

> Call the function vciEnumDeviceClose and specify handle of the device list to be
closed in parameter hEnum.

- Opened device list is closed.

- Specified handle is released.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Device Management and Device Access 12 (114)

3.2 Searching Individual Devices

Individual devices can be searched via the hardware ID, device class or a predefined dialog. For
example, via the device class (vciFindDeviceByClass) an application can search for the
first PC-104/PCl in the system.

> To search a device with a certain hardware ID, call the function vciFindDeviceByHwid.
» To search a device by device class (GUID), call the function vciFindDeviceByClass.

» Specify the device class (GUID) in parameter rClass and the instance number of the
searched CAN interface in parameter dwinst.

» To display a predefined dialog that shows the device list, call the function
vciSelectDeviceDlqg and select the desired device.

- If run successful, all functions return the device ID (VCIID) of the selected device.

@ The dialog via vciSelectDeviceDIlg can also be used to find the hardware ID or the device class of
a device.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Device Management and Device Access 13 (114)

3.3 Accessing Devices
Accessing Individual Devices

» Call vciDeviceOpen and specify the device ID (VCIID) of the device to be opened in
parameter rVciid (to determine the device ID see Listing Available Devices, p. 11 and
Searching Individual Devices, p. 12).

- Returns handle to opened interface in parameter phDevice.

Accessing via Dialog

> To display a predefined dialog that shows the current device list, call the function
vciDeviceOpenDI1g and select the desired device.

- Returns handle to opened interface.

Requesting Information About an Open Device
The application must provide the required memory as a structure of type VCIDEVICEINFO.
» Call the function vciDeviceGetInfo.

- Returns information about the device in device list (see Main Information about a
Device, p. 10).

Requesting Information About Technical Features of a Device

> Call the function vciDeviceGetCaps.

The function requires the handle of the device and the address of a structure of type
VCIDEVICECAPS.

- Returns required information in structure VCIDEVICECAPS.
- Returned information informs how many bus controllers are available on a device.

- Structure VCIDEVICECAPS contains a table with up to 32 entries, that describe the
individual bus connection resp. controller. Entry 0 describes the bus connection 1, entry
1 bus connection 2 etc.

Interface Board

Connection 1 Connection 2
(Table entry 0) (Table entry 1)
Bus 1 Bus 2
Fig. 3 Interface with two bus connections

Closing Devices

To save system resources, it is recommended to close the devices if no further access is
necessary.

» Call the function vciEnumDeviceClose.
- Opened device is closed.

- Handle is released.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 14 (114)

4
4.1

Accessing the Bus
Accessing the CAN Bus

| Interface
CAN controller 1

.. || Cyclic transmit Message CAN controller 2
Control unit : :
list (optional) channel
CAN 1 CAN 2
Fig. 4 Components CAN controller and interface IDs

Each CAN connection can consist of up to three components:
e control unit (see Control Unit, p. 20)
e one or more message channels (see Message Channels, p. 15)

e cyclic transmitting list, optionally, only with devices with their own microprocessor (see
Cyclic Transmitting List, p. 30)

The different functions to access the different components (canControlOpen,
canChannelOpen, canSchedulerOpen) expect in the first parameter the handle of the
CAN interface. To save system resources the handle of the CAN interface can be released after
opening a component. For further access to the connection only the handle of component is
required.

The functions canControlOpen, canChannelOpen and canSchedulerOpen can be
called so that the user is presented with a dialog window to select the CAN interface and the
CAN connection. It is accessed by entering the value OxFFFFFFFF for the connection number. In
this case, instead of the handle of the CAN interface , the functions expect in the first parameter
the handle of the higher order window (parent), or the value ZERO if no higher order window is
available.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus

15 (114)

4.1.1 Message Channels

The basic functionality of a message channel is the same, irrespective whether the connection is
used exclusively or not. In case of exclusive use, the message channel is directly connected to the

CAN controller.

Message
channel

y

CAN controller

CAN bus

\J

Fig. 5 Exclusive use of a message channel

In case of non-exclusive usage the individual message channels are connected to the controller

via a distributor.

The distributor transfers all received messages to all active channels and parallel the transmitted
messages to the controller. No channel is prioritized i. e. the algorithm used by the distributor is
designed to treat all channels as equal as possible.

Message
channel

Message
channel

Message
channel

==

Y

A 4

Distributor

A

Y

CAN controller

©

CAN bus

Fig. 6 CAN message distributor: possible configuration with three channels

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Accessing the Bus 16 (114)

Opening a Message Channel
Create or open a message channel with the function canChannelOpen.
> In parameter hDevice specify the handle of the CAN interface.

> In parameter dwCanNo specify the number of the CAN connection to be opened (0 for
connection 1, 1 for connection 2 etc.).

> If the controller is used exclusively (exclusively with the first message channel, no further
message channel can be opened) enter in parameter fExclusive value TRUE.

or

If the controller is used non-exclusively (further message channels can be created and
opened) enter in parameter fExclusive value FALSE.

- If run successful, function returns a handle to the opened component.

Initializing the Message Channel

A newly generated message channel must be initialized before use.

Initialize with the function canChannelInitialize.

> In parameter hCanChn specify the handle of the opened message channel.

» Specify the size of the receive buffer in number of CAN messages in parameter wRxFifoSize.
> Make sure that the value in parameter wRxFifoSize is higher than 0.

> Specify the number of messages the receive buffer must contain to trigger the receive event
of a channel in wRxThreshold.

> Specify the size of the transmit buffer in number of CAN messages in parameter wTxFifoSize.

» Specify the number of messages the transmit buffer must have space for to trigger the
transmit event in wTxThreshold.

» Call the function.

@ The memory reserved for the receive and the transmit buffer comes from a limited system memory pool.
The individual buffers of a messages channel can maximally contain up to approx. 2000 messages.

Activating the Message Channel

A new message channel is inactive. Messages are only received and transmitted if the channel is
active.

> Activate and deactivate the channel with function canChannelActivate.
> To activate the channel enter in parameter fEnable value TRUE.

> To deactivate the channel enter in parameter fEnable value FALSE.

Closing the Message Channel
Always close the message channel if it is no longer needed.

> To close a message channel, call the function canChannelClose.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 17 (114)

Receiving CAN Messages

Note that, when using interfaces with FPGA, error frames get the same time stamp as the
® last received CAN message.

There are different ways of reading received messages from the receive buffer.
> Toread a received message call the function canChannelReadMessage.

- If no messages are available in the receive buffer and no waiting time is defined the
function waits until a new message is received.

> To define a maximum waiting time for the reading function, specify parameter dwTimeout.
- If no messages are available the function waits only until the waiting time is expired.
> To get an immediate answer, call the function canChannel PeekMessage.
- Next message in receive buffer is read.
- If no message is available in the receive buffer, the function returns an error code.

» To wait for a new receive message or the next receive event, call the function
canChannelWaitRxEvent.

The receive event is triggered when the receive buffer contains at least the number of
messages specified in wRxThreshold when calling canChannellnitialize (see Initializing the
Message Channel, p. 16).

Possible Use of canChannelWaitRxEvent and canChannelPeekMessage:

DWORD WINAPI ReceiveThreadProc(LPVOID lpParameter)
{

HANDLE hChannel = (HANDLE) lpParameter;

CANMSG2 sCanMsg;

while (canChannelWaitRxEvent (hChannel, INFINITE) == VCI OK)
{
while (canChannelPeekMessage (hChannel, &sCanMsg) == VCI OK)
{
// processing of the message
}
}

return 0;

Aborting the Thread Procedure

The thread procedure ends when the function canChannelWaitRxEvent returns an error
code. When correctly called, all message channel specific functions only return an error code
when a serious problem occurs. To abort the thread procedure the handle of the message
channel must be closed from another thread, where all currently outstanding functions calls and
new calls end with an error code. The disadvantage is that any transmit threads running
simultaneously are also aborted.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 18 (114)

Reception Time of a Message

The reception time of a message is noted in the field dwTime of structure CANMSG2. The field
contains the number of timer ticks that elapsed since the start of the timer. Dependent on the
hardware the timer either starts with the start of the controller or with the start of the hardware.
The time stamp of the CAN_INFO START message (see type CAN MSGTYPE INFO of
structure CANMSGINFO), that is written to the receiving FIFOs of all active message channels
when the control unit is started, contains the starting point of the controller.

To get the relative reception time of a message (in relation to the start of the controller) subtract
the starting point of the controller (see CANMSGINFO) from the absolute reception time of the
message (see CANMSG2).

After an overrun of the counter the timer is reset.

Calculation of the relative reception time (T) in ticks:
* Tw=dwTime of message — dwTime of CAN_INFO START (start of controller)
Field dwTime of the message see CANMSG2

Field dwTime of CAN_INFO_START see CAN_ MSGTYPE INFO of structure CANMSGINFO

Calculation of the length of a tick resp. the resolution of a time stamp in seconds: (tis):
* tuc [S] = dwTscDivisor / dwClockFreq
Fields dwClockFreq and dwTscDivisor see CANCAPABILITIES?Z2

Calculation of the reception time (T.x) in seconds:

o T [s] =dwTime * tisc

Transmitting CAN Messages

' Note that, when using interfaces with FPGA, error frames get the same time stamp as the
® last received CAN message.

There are different ways of transmitting messages to the bus.
» To transmit a message, call the function canChannelSendMessage.

- The function waits until a message channel is ready to receive a message and writes
the CAN message in the transmit buffer of the message channel.

» To define a maximum waiting time for sufficient space, specify parameter dwTimeout.

- If no space is available before waiting time expires, the message is not written to the
transmit buffer and the function returns VCI_E TIMEOUT.

> To write the message immediately, call the function canChannel PostMessage.
- If no space is available in the transmit buffer, the function returns an error code.
» To wait for the next transmit event, call the function canChannelWaitTxEvent.

The transmit event is triggered when the transmit buffer has sufficient space for at least the
number of messages specified in wTxThreshold when calling canChannellnitialize (see
Initializing the Message Channel, p. 16).

Possible Use of canChannelWaitTxEvent and canChannelPostMessage:

HRESULT hResult;
HANDLE hChannel;

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 19 (114)

CANMSG2 sCanMsg;

hResult = canChannelPostMessage (hChannel, &sCanMsq) ;
if (hResult == VCI E TXQUEUE FULL)
{

canChannelWaitTxEvent (hChannel, INFINITE) ;

hResult = canChannelPostMessage (hChannel, &sCanMsq)

Transmitting Messages Delayed

Connections with set bit CAN FEATURE DELAYEDTX in field dwFeatures of the structure
CANCAPABILITIESZ support the possibility to transmit messages delayed, with a latency
between two consecutive messages.

Delayed transmission can be used to reduce the message load on the bus. This prevents that
other to the bus connected participants receive too much data in too short a time, which can
cause data loss in slow nodes.

> In field dwTime of the structure CANMSGZ2 specify the number of ticks that have to pass at a
minimum before the next message is forwarded to the controller.

Delay Time
e Value 0 triggers no delay, that means a message is transmitted the next possible time.

e The maximal possible delay time is determined by the field dwMaxDtxTicks of the structure
CANCAPABILITIES?2, the value in dwTime must not exceed the value in dwMaxDtxTicks.

Calculation of the resolution of a tick in seconds (s)
o Resolution [s] = dwDtxDivisor / dwClockFreq

The specified delay time represents a minimal value as it can not be guaranteed that the
message is transmitted exactly after the specified time. Also, it has to be considered that if
several message channels are used simultaneously on one connection the specified value is
basically exceeded because the distributor handles all channels one after another.

» If an application requires a precise time sequence, use the connection exclusively.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 20 (114)

4.1.2 Control Unit
The control unit provides the following functions:
e configuration of the CAN controller
e configuration of the transmitting features of the CAN controller
e configuration of CAN message filters
e requesting of current operating state

The control unit can be opened by several application simultaneously to determine the status
and the features of the CAN controller.

To stop several competing applications from gaining control of the controller, the control unit
can exclusively be initialized once by one application at a time.

Opening and Closing the Control Unit
» Open the control unit with the function canControlOpen.
> In parameter hDevice specify the handle of the CAN interface.

> In parameter dwCanNo specify the number of the CAN connection to be opened (0 for
connection 1, 1 for connection 2 etc.).

-> The application that calls first gets the exclusive control over the CAN controller.
- If run successful, the function returns a handle to the opened component.

» With canControlClose close the control unit and release for access by other
applications.

@ Before another application can get the exclusive control, all applications have to close the parallel
opened control unit with canControlClose.

Controller States

The control unit resp. the CAN controller is always in one of the following states:

canControlOpen

——canControlReset:

canControllnitialize canControlDetectRate

offline

canControlStart (..., TRUE) canControlStart(...,FALSE)

canControllnitialize

Fig. 7 Controller states

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 21 (114)

Initializing the Controller
After the first opening of the control unit the controller is in a non-initialized state.

» To leave the non-initialized state, call the function canControlInitialize or
canControlDetectBitrate.

- Controller is in state offline.

- If the function canControlInitialize returns an access denied error code, the
CAN controller is already used by another application.

» With canControlInitialize specify the operating mode in parameter bOpMode.

» With canControlInitialize setthe bit rate and the sampling time in parameters
pBtpSDR and pBtpFDR (see Specifying the Bit Rate, p. 22 for more information).

> To detect the bit rate of a running system, call the function
canControlDetectBitrate.

- Bus timing values are determined by the function and can be applied into the function
canControlInitialize.

Starting the Controller
» Make sure, that the controller is initialized.

> To start the controller call function canControlStart with the value TRUE in parameter
fStart.

- Controller is in state online.

- Controller is actively connected to the bus.

- Incoming messages are forwarded to all active message channels.
9

Transmitting messages are transferred to the bus.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 22 (114)

Stopping (resp. Reset) the Controller
» Call the function canControlStart with the value FALSE in parameter fStart.
- Controller is in state of f1ine.
-> Data transfer is stopped.
- Controller is disabled.
or
> Call the function canControlReset.
- Controller is in state not initialized.

- Controller hardware and set message filters are reset to the predefined initial state.

@ After calling the function canControlReset a faulty message telegram on the bus is possible, if a not
completely transferred message is in the transmitting buffer of the controller.

Specifying the Bit Rate

» IncanControlInitialize specify the bit rate with the fields pBtpSDR and pBtpFDR.
The field pBtpSDR defines the bit timing parameters for the nominal bit rate resp. the bit rate
during the arbitration period. If the controller supports fast data transfer and it is activated with

the extended operating mode CAN_ EXMODE FASTDATA the field pBtpFDR determines the bit
timing parameter for the fast data rate.

Time Periods

The field dwMode of structure CANBTP determines how the further fields dwBPS, wTS1, wTS2,
wSJW and wTDO are interpreted.

If the bit CAN_ BTMODE_RAW in dwMode is set, all other fields contain controller specific values
(see Mode CAN BTMODE RAMW, p. 25).

If the bit CAN_ BTMODE_RAW is not set, the field dwBPS contains the desired bit rate in bits per
second. The fields wTS1 and wTS2 divide a bit in two time periods before and after the sample
time resp. the time when the controller determines the value of the bit (Sample Point).

Thit
tsp
! /
! !
! SYNC PROF PHASE1 FHASEZ SYNC !
/ /
| wTS1 | wTS2 |
Sample Point (SP)
Fig. 8 Segmentation of a bit in different time periods

The amount of the fields wTS1 and wTS2 is the length of a bit tyit and determines the number of
time quanta in which a bit is divided:

. Number of time quanta per bit: Qpit = wTS1 + wTS2

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 23 (114)

With the highest possible values for wTS1 and wTS52 a bit can be divided in up to 65535+65535=
131070 time quanta.

The number of time quanta per bit Quir determines together with the selected bit rate the length
of an individual time quantum tq resp. its resolution:

) tq = thit [Quit=1/ (bit rate * Qpit)

Bit.,.1 Bit,, Bit,..«
@ @& o & [|la|le|le|e]e|e]|w
Qep
) Qaect | Qseee
stnn Qeroe Qprase Qpriasez
= i i L B -
i f
! !
! BYNC PROP PHASE1 PHASEZ SYNC !
/ | | | | | | /
| wTSH | wrsz2 |
Sample Point (SP)
Fig. 9 Segmentation of a bit in time quanta and segments

The figure shows exemplary a segmentation in 10 time quanta. wT51=8 and wT52=2 is selected,
with that the sample point is determined to 8/10 resp. 80 % of a bit time.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 24 (114)

Segments

According to the CAN specification a bit is divided into the segments SYNC, PROP plus PHASE1
and PHASE2. The beginning of a bit is expected in segment SYNC. The segment PROP serves as
compensation to the cable and component caused delays. The segments PHASE1 resp. PHASE2
serve as compensation for the phase errors, that are caused for example by oscillation tolerances.

If the following recessive dominant signal flank does not occur during SYNC a post scoring by the
controller follows. The primary scoring of the controller to the beginning of a message is always
done with the starting bit of a message.

Post scoring

e Segments PHASE1 resp. PHASE2 are lengthened or shortened depending on the length of
the phase.

e Number of time quanta (Qs)w) necessary to compensate the phase errors is called
synchronization jump width (SJW) and specified in the field wSJW.

e The time shifting ts;w that can be compensated with that can be calculated with:

tow = tq ¥ wSIW

Synchronization Jump Width

A post scoring reduces the phase error maximally by the set synchronization jump width. If the
error is not completely compensated by that a remaining phase error occurs. Because a post
scoring is only done after a recessive dominant signal flank in error-free transmission it lasts
maximally 10 bit times (5 dominate bits followed by 5 recessive bits) until a new recessive
dominate signal flank occurs. In this 10 bit times remaining phase errors can summarize and have
to be corrected by the set synchronization jump width. This results in the following condition:

Condition 1
e 2*AF* (10 * tpir) < tsyw (1)

In case of an error on the bus it is possible that up to 6 bits are transmitted in a row and a stuff
error occurs. The controller that recognizes that at first (and is error active) then transmits an
error telegram, that consists of 6 bits. Other controllers on the bus recognize this as stuff error
and echo also an error telegram. On the bus a row of up to 13 dominate bits occur. In this case
the next post scoring can earliest be done after 13 bit times. In this time also reset phase errors
summarize. The compensation by the set synchronization jump width must be possible. This
results in the second condition:

Condition 2

e 2 *AF * (13 * tpir — tpHase2) < min(terasel, trHase2) (2)

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 25 (114)

Time Quanta
Observe the following when specifying:

¢ Number of time quanta inside of segment PROP (Qpror): choose according to the cable and
component caused delays.

e The minimum number of time quanta in PHASE1 (Qpuase1) is determined by the number of
time quanta (Qsyw) that are needed to compensate phase errors: must be higher than or
equal the synchronization jump width.

e The minimum number of time quanta in PHASE2 (Qpuasez) is determined by the
synchronization jump width: consider processing time of the controller.

e Information processing time (IPT) begins with the sampling time and requires a certain
amount of time quanta (Qupr): Qprase2 Must be higher than or equal Qpr + Qsyw.

The number of time quanta in the first segment until the sampling point (Qsp) is equal to the sum
of all time quanta in segments SYNC, PROP and PHASE1 and is determined with the value wTS1.
The number of time quanta in the second segment after the sampling point (Qses2) is equal to
the sum of all time quanta in segments PHASE2 and is determined with the value wTS2.

The length of a time quantum tq also determines the value of wSJW and therefore is important
for the post scoring resp. the compensation of phase errors.

In example Segmentation of a bit in time quanta and segments, p. 23 with wTS1=8, wT52=2 and
Quit=10 the sampling point is 80 %. The resolution of a time quantum is 1/10 resp. 10 % of a bit
time. If the value 1 is specified for wSJW the sampling point of a phase correction is shifted
about + 10 % of a bit time. Higher values than 1 are not allowed for wSJW in this example,
because sampling errors could occur.

With a high number of time quanta phase errors can be corrected more precisely because the
length of a time quanta is shortened by this.

A sampling point of 80 % can for example be reached if for wTS1 the value 80 and for wTS2 the
value 20 (Quit=100) is specified. The resolution of a time quantum then is 1 % of a bit time. In this
case with wSJW=1 phase errors up to +1 % of a bit time can be corrected.

The resolution of a time quantum theoretically can be shortened down to 1/131070 =7.63*10-6
resp. 7.63 ppm. As the values for the individual segments have to be converted to the hardware
specific register, the limits are higher. Regarding the SJA1000 with 16 MHz clock frequency the
maximum possible value for Qi is 25 (1+16+8) and therefore the minimum possible resolution is
1/25 resp. 4 % of a bit time. With higher bit times the number of time quanta is reduced and is
for 1 Mbit only 8, that results in a resolution of 1/8 resp. 12.5 % of a bit time.

> To get information about the value ranges of the individual segments supported by the
hardware call function canControlGetCaps.

-> Fields sSdrRangeMin, sSdrRangeMax resp. sFdrRangeMin and sFdrRangeMax of
structure CANCAPABILITIES?Z indicated with calling of the function contain
hardware specific minimum and maximum values.

Mode CAN_BTMODE _RAW

e Field dwBPS contains the value for the frequency divider (Np) in the CAN controller (instead
of bit rate).

e Field wTS1 contains segments PROP and PHASE1 (instead of time segments SYNC, PROP and
PHASE1)

e Number of time quanta in segment SYNC is fixed and always one.

e Assignments of fields w752 and wSJW remain the same.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 26 (114)

The following figure shows the assignment of the fields to the individual segments and the
generation of the frequency for the bit processor and the resulting times.

rgw—| |—— CAN Clack (fzan)

| Ll 1
Lo .
1%]
! i
1
[Biter Bits, Bitu+ |

[[@e Oci(]tle|Q:]Qa|Cﬁ:-|0;lD!|Qs]Qe o |

tse tsece
tseat
tayne trroP | terases trHasez
.
/ /
f 1
! BYNC PROP PHASET PHASE2 NG !
! | I I 1 | /
[WISt [wrsz]

Sample Point (SP)

Fig. 10 Clock generator for the bit processor in the CAN controller

The field dwCanClkFreq of structure CANCAPABILITIESZ returns the frequency of the clock
generator fcan for the bit processor. This system frequency is divided by an adjustable frequency
divider (prescaler). The output of the frequency divider determines the length of a time quantum
ta:

e tq=tcan * Np = Np/ fcan

The bit time tyi; is an integral multiple of a time quantum tq and is calculated by:
* tpit = ta * Quit = Quit * Np / fean

The bit rate fby is calculated by:

o fhit = 1/toit = fean / (Quit * Ne)

To specify the bit rate fy,it with predefined frequency fcan the prescaler Np and the number of
time quanta Quit must be specified.

A possibility to specify the parameters is for example to begin with the maximally possible time
quanta max(Qyit) and to determine with that the value for the prescaler Np.

e Np=fean / (foit * Quit)

If no appropriate value results for Np, the number of time quanta is reduced by 1 and a new
value for Np is calculated. This is proceeded until either a appropriate value for Np is found or the
value has fallen below the minimal amount of time quanta min(Qypit).

If the value has fallen below the minimal amount of time quanta there is no solution for the
demanded bit rate. In the other case with the found values for Np and Qpi: the values for w751,
wTS2 and wSJW can be determined in the following way:

> Calculate the time of a time quantum:

ta = Np / fean

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 27 (114)

> Determine the amount of time quanta Qs)w required for the post scoring with Condition 1
and Condition 2.

@ The value is dependent on the oscillation tolerance AF. The oscillation tolerance of Ixxat CAN interfaces is
normally smaller than 0.1 % but in this case the greatest oscillation tolerance of all nodes existing in the
network must be considered.

» To calculate the number of required time quanta for the segment PROP (Qprop) divide the
cable and component caused delays tprop by the length of a time quantum tq and round up
to the next integral number:

Qprop = round_up(teror / ta)
> Calculate the total number of time quanta for the phase compensation Qpuase:
QpHase = Quit — (Qsync + Qprop) = Qwit - 1 - Qprop

Qprase1 and Qpyasez are calculated by a integral division of Qpuase by 2 and the remaining. In
case of an uneven value for Qpuase the smaller part is assigned to Qpnase1 and the greater to
Qphase2.

QpHaser = INT(Qphase/2)
QpHase2 = INT(Qphase/2) + MOD(Qphase/2)

If Qphasea is less than Qsyw or Qphasez is less than Qs;w + Qipr there is no solution for the
requested bit rate. The minimum value of sSdrRangeMin.wTS2 resp. sFdrRangeMin.wTS2
corresponds to Qupr.

For more information about the setting of the bit rate see CAN resp. CAN FD specification and in
the CAN FD white paper of Bosch both in chapter “Bit Timing Requirements”.

For information about the calculation of the parameter for the fast bit rate see CAN FD
specification.

41.3 Message Filter

All control units have a two-level message filter to filter the data messages received from the bus.
The data messages are exclusively filtered by the ID. Data bytes are not considered.

If the self reception request bit on a transmit message is set, the message is entered in the
receive buffer as soon as it is transmitted on the bus. In this case the message filter is bypassed.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 28 (114)

CAN message

ID not
accepted

Acceptance
Filter

ID accepted

ID found

ID not found
Message Message
rejected accepted

Fig. 11 Filtering mechanism

The first filter level consists of an acceptance filter that compares the ID of a received message
with a binary bit sample. If the ID correlates with the set bit sample the ID is accepted.

If the first filter level does not accept the ID it is forwarded to the second filter level. The second
filter level consists of a list with registered message IDs. If the ID of the received message is
equal to an ID in the list, the message is accepted.

Setting the Filter

The CAN controller has separated and independent filters for 11 bit and 29 bit IDs. Messages
with 11 bit ID are filtered by the 11 bit filter and messages with 29 bit ID are filtered by the 29
bit filter.

When the controller is reset or initialized the filters are set to let every message pass.

@ Changes of the filters during operation are not possible.

> Make sure that the control unit is in state offline.
» To set the filter, call the function canControlSetAccFilter.

» Add individual IDs or groups of IDs to the filter list with the function
canControlAddFilterIds and remove with canControlRemFilterIds.

> In parameter fExtend set FALSE for 11 bit filter or TRUE for 29 bit filter.

> In parameters dwCode and dwMask specify two bit samples that determine one or more IDs
that must be registered.

- Value of dwCode determines the bit sample of the ID.
- dwMask determines which bits in dwCode are valid and used for the comparison.

If a bit in dwMask has the value 0 the correlating bit in dwCode is not used for the comparison.
But if it has the value 1 it is relevant for the comparison.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 29 (114)

In case of the 11 bit filter exclusively the lower 12 bits are used. In case of the 29 bit filter the
bits 0 to 29 are used. Bit 0 of every value defines the value of the remote transmission request
bit (RTR). All other bits of the 32 bit value must be set to 0 before one of the functions is called.

Correlation between the bits in the parameter dwCode and dwMask and the bits in the message

ID:
11 bit filter
Bit 11 10 9 8 7 6 5 4 3 2 1 0
ID1I0 | ID9 D8 ID7 ID6 ID5 ID4 ID3 D2 ID1 IDO RTR
29 bit filter
Bit 29 28 27 26 25 5 4 3 2 1 0
ID28 [ID27 |ID26 |ID25 D24 | ID4 ID3 D2 ID1 IDO RTR

The bits 1 to 11 resp. 1 to 29 of the values in dwCode resp. dwMask correspond to the bits 0 to
10 resp. 0 to 28 of the ID of a CAN message. Bit 0 always corresponds to the Remote
Transmission Request bit (RTR) of the message.

The following example shows the values that must be used for dwCode and dwMask to register
message IDs in the range of 100 h to 103 h (with RTR bit not set) in the filter:

dwCode 001 0000 0000 0
dwMask 111111111001
Valid IDs: 001 0000 00xx O
ID 100h, RTR = 0: 001 0000 0000 O
ID 101h, RTR = 0: 001 0000 0001 O
ID 102h, RTR = 0: 001 0000 0010 0O
ID 103h, RTR = 0: 001 0000 0011 O

The example shows that with a simple acceptance filter only individual IDs or groups of IDs can
be released. If the desired identifiers do not correspond with a certain bit sample, a second filter
level, a list with IDs, must be used. The amount of IDs a list can receive can be configured. Each
list can contain up to 2048 resp. 4096 entries.

> Register individual or groups of IDs with function canControlAddFilterIds.
> If necessary remove from list with the function canControlRemFilterIds.

The parameters dwCode and dwMask have the same format as showed above.

If canControlAddFilterIds is called with the same values as in the example above the
function enters the identifier 100 h to 103 h to the list.

> To register exclusively an individual ID in the list, specify the desired ID (including RTR bit) in
dwCode and in dwMask the value OxFFF (11 bit ID) resp. 0x3FFFFFEFF (29 bit ID).

> To disable the acceptance filters completely, when calling the function
canControlSetAccFilter enter in dwCode the value CAN ACC_CODE_NONE and in
dwMask the value CAN_ ACC MASK NONE.

-> Filtering is exclusively done with ID list.
or

> To open the acceptance filter completely, when calling canControlSetAccFilter
enter the values CAN_ACC CODE_ALL and CAN ACC_MASK ALL.

- Acceptance filter accepts all IDs and ID list is ineffective.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus

30 (114)

4.1.4

Cyclic Transmitting List

With the optionally provided transmitting list of the controller up to 16 messages can be
transmitted cyclically. It is possible that after each transmit process a certain part of a CAN
message is automatically incremented. The access to this list is limited to one application and
therefore can not be used by several programs simultaneously.

Open the interface with the function canSchedulerOpen.

>

>

In parameter hDevice specify the handle of the CAN interface.

In parameter dwCanNo specify the number of the CAN connection to be opened (0 for
connection 1, 1 for connection 2 etc.).

- The application that calls first gets the exclusive control over the CAN controller.
- If run successful, the function returns a handle to the opened component.

- If function returns an error code respective access denied the transmitting list is
already under control of another program and can not be opened again.

To close an opened transmit list and release it for access by other applications, call
canSchedulerClose.

To add a message object to the list, call the function canSchedulerAddMessage. The
function expects a pointer to a structure of type CANCYCLICTXMSGZ that specifies the
transmit object that is to be added to the list.

- If run successfully, the function returns list index of the added transmit object.

Specify the cycle time of a message in number of ticks in field wCycleTime of the structure
CANCYCLICXMSGZ2.

Make sure that the specified value is higher than 0 but less than or equal the value in field
dwCmsMaxTicks of the structure CANCAPABILITIES?2.

Calculate the length of a tick resp. the cycle time of the transmitting list (t,) with values in
fields dwClockFreq and dwCmsDivisor with the following formula:

t, [s] = (dwCmsDivisor |/ dwClockFreq)

The transmitting task of the cyclic transmitting list divides the available time in individual
segments resp. time frames. The length of a time frame is exactly the same as the length of a tick
resp. the cycle time (t,).

tcyde Transmitting
list
24 | 1

23 2 /l 0

22 3 I 1

P\ Transmitting Object 1 2

21 4 (wCycleTime = 2) 3

20 5 g
19 6 ’ﬁ 6
Transmitting Transmitting Object 2 7

18 task 7 | (wCycleTime = 3) | g
17 8 1?
9 12
16 13
15 10 14
14 [43| 12 11 15

Fig. 12 Transmitting task of the cyclic transmitting list with 24 time frames

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 31 (114)

The transmitting task can transmit exclusively one message per tick, e. i. exclusively one
transmitting object can be matched to a time frame. If the transmitting object is created with a
cycle time of 1 all time frames are occupied and no other objects can be created. The more
transmitting objects are created, the larger their cycle time must be selected. The rule is: The
total of all 1/wCycleTime has to be less than 1.

In the example a message shall be transmitted every 2 ticks and a further message every 3 ticks,
this amounts 1/2 + 1/3 = 5/6 = 0.833 and therefore a valid value.

If the transmitting object 1 is created with a wCycleTime of 2 the time frames 2, 4, 6, 8, etc. are
occupied. If the second transmitting object is created with a wCycleTime of 3, it leads to a
collision in the time frames 6, 12, 18, etc. because these time frames are already occupied by the
transmitting object 1.

Collisions are resolved in shifting the new transmitting object in the respectively next free time
frame. The transmitting object of the example above then occupies the time frames 3, 7, 9, 13,
19, etc. The cycle time of the second object therefore is not met exactly and in this case leads to
an inaccuracy of +1 tick.

The temporal accuracy of the transmitting of the objects is heavily depending on the message
load on the bus. With increasing load the transmitting time gets more and more imprecise. The
general rule is that the accuracy decreases with increasing bus load, smaller cycle times and
increasing number of transmitting objects.

The field bincrMode of structure CANCYCLICTXMSGZ2 determines if certain parts of a message
are automatically incremented after transmitting or if they remain unmodified.

If in bincrMode CAN_CTXMSG_INC_NO is specified, the content of the message remains
unmodified. With the value CAN CTXMSG INC ID the field dwMsgld of the message
automatically increases by 1 after every transmission. If field dwMsgld reaches the value 2048
(11 bit ID) resp. 536.870.912 (29 bit ID) an overflow to 0 automatically takes place.

With the values CAN_CTXMSG_INC_ 8 resp. CAN CTXMSG_ INC 16 an individual 8 bit resp.
16 bit value is increment in the data field abData[] after each transmission. The field bBytelndex
of the structure CANCYCLICTXMSG2 determines the starting position of the data value.

‘ bBytelndex —
B
abData o[1] 2 3 [4]5]6]7
CAN CTXMSG_INC_8 XXX
CAN_CTXMSG_INC 16 | | | LSB | MSB

Fig. 13 Auto increment of data fields

Regarding 16 bit values, the low byte (LSB) is located in the field abData[bBytelndex] and the
high byte (MSB) in the field abData[bBytelndex+1]. If the value 255 (8 bit) resp. 65535 (16 bit) is
reached, an overflow to 0 takes place.

> If necessary, remove the transmitting object from the list with the function
canSchedulerRemMessage. The function expects the list index of the object to remove
returned by canSchedulerAddMessage.

> To transmit the newly created transmitting object, call the function
canSchedulerStartMessage.

> If necessary, stop transmitting with the function canSchedulerStopMessage.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 32 (114)

> To get the status of transmitting task and of all created transmitting objects, call the
function canSchedulerGetStatus. The required memory is provided as structure of
type CANSCHEDULERSTATUSZ2 by the application.

- If run successfully, the fields bTaskStat and abMsgStat contain the state of the
transmitting list and the transmitting objects.

To determine the state of an individual transmitting object the list index returned by function
canSchedulerAddMessage is used as index in the table abMsgStat i. e. abMsgStat[Index]
contains the state of the transmitting object of the specified index.

The transmitting task is deactivated after opening the transmitting list. The transmitting task
does not transmit any message in deactivated state, even if the list is created and contains
started transmitting objects.

» To start all transmitting objects simultaneously, first start all transmitting objects with the
function canSchedulerStartMessage.

> Activate the transmit task of the transmitting list with the function
canSchedulerActivate.

> To stop all transmit objects simultaneously, disable the transmit task.
> To reset a transmitting task call the function canSchedulerReset.
- Transmitting task is stopped.

- All registered transmitting objects are removed from the specified cyclic transmitting
list.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 33 (114)

4.2

4.2.1

Accessing the LIN Bus

| Interface

LIN controller 1

CAN controller 1 CAN controller 2 . .
Control unit Monitor

| | I

CAN 1 CAN 2 LIN 1

Fig. 14 Components LIN controller

Each LIN connections consists of the following components:
e control unit (see Control Unit, p. 36)
* one or more message monitors (see Message Monitors, p. 33)

The different functions to access the different components (1 inControlOpen,
linMonitorOpen) expect in the first parameter the handle of the interface. To save system
resources the handle of the interface can be released after opening a component. For further
access to the connection only the handle of component is required.

The functions 1inControlOpen and 1inMonitorOpen can be called so that the user is
presented with a dialog window to select the interface and the LIN connection. It is accessed by
entering the value OxFFFFFFFF for the connection number. In this case, instead of the handle of
the interface, the functions expect in the first parameter the handle of the higher order window
(parent), or the value ZERO if no higher order window is available.

Message Monitors

The basic functionality of a message monitor is the same, irrespective whether the connection is
used exclusively or not. In case of exclusive use, the message channel is directly connected to the
controller. If the LIN connection is not used exclusively, theoretically any number of message
monitors can be created.

Monitor

LIN controller

A4

LIN bus
Fig. 15 Exclusive usage

In case of non-exclusive usage the individual message monitors are connected to the controller
via a distributor.

The distributor transfers all received messages to all active monitors and parallel the transmitted
messages to the controller. No monitor is prioritized i. e. the algorithm used by the distributor is
designed to treat all monitors as equal as possible.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus

34 (114)

Monitor Monitor Monitor

= | 2| B

Y Y

[Distributor]

Y

LIN controller

LIN bus

Fig. 16 Non-exclusive usage (with distributor)

Opening a Message Monitor

Create or open a message monitor with the function 11inMonitorOpen.

>

>

In parameter hDevice specify the handle of the opened LIN monitor.

In parameter dwLinNo specify the number of the LIN connection to be opened (0 for
connection 1, 1 for connection 2 etc.).

To use the controller exclusively (only possible when creating the first message monitor)
enter in parameter fExclusive the value TRUE. After successful execution no further
message monitors can be created.

or

To use the controller non-exclusively (creation of any number of monitors is possible) enter
in parameter fExclusive the value FALSE.

- Function returns a handle to the opened component.

Initializing the Message Monitor

A newly generated message monitor has to be initialized before use.

Initialize with the function 1inMonitorInitialize.

>

>

»

>

In parameter hLinMon specify the handle of the opened LIN monitor.
Specify the size of the receive buffer in number of messages in parameter wFifoSize.
Make sure that the value in parameter wFifoSize is higher than 0.

Specify the number of messages the receive buffer must contain to trigger the receive event
of a monitor in wThreshold.

The size of an element in the FIFO conforms to the size of the structure LINMSG.
All functions to access the data elements of the FIFO attend resp. return a pointer to structures

of ty

pe LINMSG.

@

The memory reserved for the receive and the transmit buffer comes from a limited system memory pool.
The individual buffers of a messages channel can maximally contain up to approx. 2000 messages.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 35(114)

Activating the Message Monitor

A new monitor is deactivated. Messages are only received and transmitted if the monitor is
active and if the LIN controller is started. For more information about LIN controllers see chapter
Control Unit, p. 36.

> Activate and deactivate the message monitor with the function 1 inMonitorActivate.
> To activate the monitor enter in parameter fEnable the value TRUE.

> To deactivate the monitor enter in parameter fEnable the value FALSE.

Closing the Message Monitor
Always close the message monitor if it is no longer needed.

> To close a message monitor call the function 1inMonitorClose.

Receiving LIN Messages
There are different ways of reading received messages from the receive buffer.
> Toread a received message call the function 11inMonitorReadMessage.

- If no messages are available in the receive buffer and no waiting time is defined the
function waits until a new message is received.

> To define a maximum waiting time for the reading function, specify parameter dwTimeout.
- If no messages are available the function waits only until the waiting time is expired.
> To get an immediate answer, call the function 1inMonitorPeekMessage.
- Next message in receive buffer is read.
- If no message is available in the receive buffer, the function returns an error code.

» To wait for a new receive message or the next receive event, call the function
linMonitorWaitRxEvent

The receive event is triggered when the receive buffer contains at least the number of
messages specified in wThreshold when calling 1inMonitorInitialize (see Initializing
the Message Monitor, p. 34).

Possible Use of 1inMonitorWaitRxEvent and 1inMonitorPeekMessage:

DWORD WINAPI ReceiveThreadProc(LPVOID lpParameter)

{
HANDLE hLinMon = (HANDLE) lpParameter;
LINMSG sLinMsg;

while (linMonitorWaitRxEvent (hLinMon, INFINITE) == VCI OK)
{
while (linMonitorPeekMessage (hLinMon, &sLinMsg) == VCI_OK)
{
// processing of the message
}
}

return 0;

Aborting the Thread Procedure

The thread procedure ends when the function 1inMonitorWaitRxEvent returns an error
code. When correctly called all message monitor specific functions only return an error code
when a serious problem occurs. To abort the thread procedure the handle of the message
monitor must be closed from another thread, where all currently outstanding functions calls and

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 36 (114)

new calls end with an error code. The disadvantage is that any transmit threads running
simultaneously are also aborted.

4.2.2 Control Unit
The control unit provides the following functions:
e configuration of the LIN controller
e configuration of transmitting features of the LIN controller
e requesting of current controller state
The control unit can exclusively be opened by one application. Simultaneous opening by several
programs is not possible.
Opening and Closing the Control Unit
> Open with the function 1inControlOpen.
> In parameter hDevice specify the handle of the LIN controller.

> In parameter dwLinNo specify the number of the connection to be opened (0 for connection
1, 1 for connection 2 etc.).

- If run successfully, function returns the handle of the interface.

- If the function returns an error code respective access denied the component is already
used by another program.

» With 1inControlClose close the control unit and release for access by other
applications. Only release the control unit when it is no longer required.

LinControlOpen()

linControllnitialize() linControlReset()

linControllnitialize() linControlStart(...,TRUE) linControlStart(...,FALSE) linControlReset()

Fig. 17 LIN controller states

Initializing the Controller

After the first opening of the control unit the controller is in a non-initialized state.

» To leave the non-initzialized state, call the function IinControlInitialize.
> In parameter hLinCtl specify the handle of the LIN controller.

- Controller is in state offline.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 37 (114)

> With I1inControlInitialize specify the operating mode in parameter bMode.

» With IinControlInitialize specify the bitrate in bits per second in parameter
wBitrate.

Valid values are between 1000 and 20000 bit/s, resp. between the values that are specified
by LIN BITRATE MIN and LIN BITRATE MAX.

> If the controller supports automatic bitrate detection, enter LIN BITRATE AUTO in the
field wBitrate to activate the automatic bitrate detection.

Recommended Bitrates
Slow (bit/sec) Medium (bit/sec) Fast (bit/sec)
2400 9600 19200

Starting and Stopping the Controller

» To start the LIN controller, call the function 1inControlStart with the value TRUE in
parameter fStart.

- LIN controller is in state online.
- LIN controller is actively connected to bus.
- Incoming messages are forwarded to all active message monitors.

> To stop the LIN controller, call the function 1inControlStart with the value FALSE in
parameter fStart.

- LIN controller is in state offline.
- Message transfer to the monitor is interrupted and controller is deactivated.

» Call the function I1inControlReset to shift the controller to state offline and to reset
the controller hardware.

With calling the function 1inControlReset a faulty message telegram on the bus is possible if an
ongoing transmission is interrupted.

Transmitting LIN Messages

Messages can be transmitted directly or can be registered in a response table in the controller.

Response Table
IDO

ID1
ID2

ID59
ID60
D61
D62
ID63

Transmit Buffer
IDx

Fig. 18 Internal structure of a control unit

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Accessing the Bus 38 (114)

The control unit contains an internal response table with the response data for the IDs
transmitted by the master. If the controller detects an ID that is assigned to it and transmitted by
the master, it transmits the response data entered in the table at the corresponding position
automatically to the bus.

Change and update the content of the response table with the function
linControlWriteMessage:

> In parameter hLinCtl specify the handle of the opened LIN controller.
> In parameter fSend enter value FALSE.

- The message with the response data in the field abData of the structure LINMSG is
transferred to the function in parameter pLinMsg.

> To clear the response table, call the function IinControlReset.

The LIN message in field abData of the structure LINMSG has to be of type LIN MSGTYPE
DATA and has to contain an ID in the range 0 to 63. Irrespective of the operating mode (master
or slave) the table has to be initialized before the controller is started. It can be updated at any
time without stopping the controller.

Transmit messages directly to the bus with the function 1inControlWriteMessage:
> In parameter hLinCtrl specify the handle of the opened LIN controller.
> In parameter fSend enter value TRUE.

-> Message is registered in the transmitting buffer of the controller, instead of the
response table.

- Controller transmits message to bus as soon as it is free.

If the connection is operated as master, control messages LIN MSGTYPE SLEEP and LIN
MSGTYPE WAKEUP and data messages of the type LIN MSGTYPE DATA can be transmitted
directly. If the connection is configured as slave, exclusively LIN MSGTYPE WAKEUP messages
can be directly transmitted. With all other message types the function returns an error code.

A message of the type LIN_MSGTYPE_SLEEP generates a goto-Sleep frame, a message of the
type LIN MSGTYPE WAKEUP a wake-up frame on the bus. For more information see chapter
Network Management in LIN specifications.

In master mode the function 1inControlWriteMessage also serves for transmitting IDs.
For this a message of the type LIN MSGTYPE DATA with valid ID and data length, where the
bit uMsginfo.Bits.ido is set to 1, is required (for more information see LTNMONITORSTATUS).

Irrespective of the value of the parameter fSend 1inControlWriteMessage always returns
immediately to the calling program without waiting for the transmission to be completed. If the
function is called before the last transmission is completed or before the transmission buffer is
free again, the function returns with a respective error code.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

39 (114)

5

5.1
5.1.1

5.1.2

Functions

General Functions

vcilnitialize

Initializes the VCINPL2 for the calling process.

HRESULT EXTERN C vciInitialize (
);

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The function must be called at the beginning of a program in order to initialize the DLL for the

calling process.

vciGetVersion
Gets the version number of the installed VCI.

HRESULT EXTERN C vciGetVersion (
PUINT32 pdwMajorVersion,
PUINT32 pdwMinorVersion,
PUINT32 pdwRevNumber,
PUINT32 pdwBuildNumber

)

Parameter

Parameter Dir. Description

pdwMajorVersion [out] Address of a variable of type UINT32. If run successfully, the function
returns the major version number of the VCl in this variable.

pdwMinorVersion [out] Address of a variable of type UINT32. If run successfully, the function
returns the minor version number of the VCl in this variable.

pdwRevNumber [out] Address of a variable of type UINT32. If run successfully, the function
returns the revision number of the VCl in this variable.

pdwBuildNumber [out] Address of a variable of type UINT32. If run successfully, the function
returns the build number of the VCI in this variable.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

40 (114)

5.1.3 vciFormatErrorA

Formats VCI error code as text.

HRESULT EXTERN_ C vciFormatErrorA (

HRESULT hrError,

PCHAR pszText,

UINT32 dwLength
) i

Parameter
Parameter Dir. Description
hrError [in] Error code that is to be converted into text.
pszText [out] Pointer to a buffer for the text string. The buffer must provide space for
at least dwlength characters. The function saves the error text including
a final O character in the specified memory area.
dwlength [in] Size of the buffer specified in pszText in number of characters.

Return Value

Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
5.14 vciFormatErrorW

Formats VCI error code as text (wide character version).

HRESULT EXTERN_ C vciFormatErrorW (
HRESULT hrError,
PWCHAR pwszText,
UINT32 dwLength

);

Parameter
Parameter Dir. Description
hrError [in] Error code that is to be converted into text.
pwszText [out] Pointer to a buffer for the text string. The buffer must provide space for
at least dwlLength characters. The function saves the error text including
a final O character in the specified memory area.
dwlength [in] Size of the buffer specified in pszText in number of characters.

Return Value

Return value Description

VCI OK Function succeeded
1=VCI_OK

Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

41 (114)

5.1.5 vciDisplayErrorA

Displays VCI error code in message box.

void EXTERN C vciDisplayErrorA (

HWND hwndParent,
PCHAR pszCaption,

HRESULT hrError

)

Parameter

Parameter Dir. Description

hwndParent [in] Handle of the higher order window. If value ZERO is specified here, the
message window has no higher order window.

pszCaption [in] Pointer to a O-terminated character string with the text for the tile line
of the message window. If value ZERO is specified here, a pre-defined
title line text is displayed.

hrError [in] Error code for which the message is to be displayed.

Return Value

Return value

Description

VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
5.1.6 vciDisplayErrorW

Displays VCI error code in message box (wide character version).

void EXTERN C vciDisplayErrorW (

HWND hwndParent,
PWCHAR pszCaption,

HRESULT hrError

);

Parameter

Parameter Dir. Description

hwndParent [in] Handle of the higher order window. If value ZERO is specified here, the
message window has no higher order window.

pszCaption [in] Pointer to a O-terminated character string with the text for the tile line
of the message window. If value ZERO is specified here, a pre-defined
title line text is displayed.

hrError [in] Error code for which the message is to be displayed.

Return Value

Return value Description
VCI_OK Function succeeded
!=VCI_OK

Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

42 (114)

5.1.7 vciCreateLuid

Creates a locally unique VCI ID.

HRESULT EXTERN C vciCreateLuid (

PVCIID pVciid
)

Parameter
Parameter Dir. Description
pVciid [out] Pointer to buffer for the locally unique VCI ID

Return Value

Return value

Description

VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
5.1.8 vciLuidToCharA

Converts a locally unique ID (VCIID) to a character string.

HRESULT EXTERN C vciLuidToCharA (

REFVCIID rVciid,

PCHAR pszLuid,
LONG cbSize
)
Parameter
Parameter Dir. Description
rVciid [in] Reference to the locally unique VCI ID to be converted into a character
string
pszLuid [out] Pointer to a buffer for the O-terminated character string. If run
successfully, the function saves the converted VCI ID in the memory area
specified here. The buffer must provide space for at least 17 characters
including the final O-character.
cbSize [in] Size of the buffer specified in pszLuid in bytes

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E INVALIDARG

Parameter pszLuid points to an invalid buffer.

VCI_E BUFFER OVERFLOW

Buffer specified in pszLuid is not large enough for the character string.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

43 (114)

5.1.9 vciLuidToCharW

Converts a locally unique ID (VCIID) to a wide character string.

HRESULT EXTERN C vciLuidToCharW (

REFVCIID rVciid,
PWCHAR pwszLuid,

LONG cbSize
);
Parameter
Parameter Dir. Description
rVciid [in] Reference to the locally unique VCI ID to be converted into a character
string
pwszLuid [out] Pointer to a buffer for the O-terminated wide character string. If run
successfully, the function saves the converted VCI ID in the memory area
specified here. The buffer must provide space for at least 17 characters
including the final O-character.
cbSize [in] Size of the buffer specified in pszLuid in bytes

Return Value

Return value

Description

VCI_OK

Function succeeded

VCI_E INVALIDARG

Parameter pszLuid points to an invalid buffer.

VCI_E BUFFER OVERFLOW

Buffer specified in pszLuid is not large enough for the character string.

5.1.10 vciCharToLuidA

Converts a O-terminated character string to a locally unique VCI ID (VCIID).

HRESULT EXTERN C vciCharToLuidA (

PCHAR pszLuid,
PVCIID pVciid
)i

Parameter
Parameter Dir. Description
pszLuid [in] Pointer to the O-terminated character string to be converted
pVciid [out] Address of a variable of type VCIID. If run successfully, the function
returns the converted ID in this variable.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E INVALIDARG

Parameter pszLuid or pVciid points to an invalid buffer.

VCI E FAIL

Character string specified in pszLuid can not be converted into a valid ID.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

44 (114)
5.1.11 vciCharToLuidW
Converts a O-terminated wide character string to a locally unique VCI ID (VCIID).
HRESULT EXTERN C vciCharToLuidW (
PWCHAR pwszLuid,
PVCIID pVciid
);
Parameter
Parameter Dir. Description
pwszLuid [in] Pointer to the O-terminated wide character string to be converted
pVciid [out] Address of a variable of type VCIID. If run successfully, the function
returns the converted ID in this variable.

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_INVALIDARG Parameter pszLuid or pVciid points to an invalid buffer.

VCI_E FAIL Character string specified in pszLuid can not be converted into a valid ID.

5.1.12 vciGuidToCharA
Converts a globally unique ID (GUID) into a character string.

HRESULT EXTERN C vciGuidToCharA (
REFGUID rGuid,
PCHAR pszGuid,

LONG cbSize
) i

Parameter

Parameter Dir. Description

rGuid [in] Reference to the globally unique ID that is to be converted into a
character string

pszGuid [out] Pointer to the buffer for the O-terminated character string. If run
successfully, the function saves the converted GUID in the specified
memory area. The buffer must have space for at least 39 characters
including the final O-character.

cbSize [in] Size of the in pszGuid specified buffer in Bytes.

Return Value

Return value Description

VCI OK Function succeeded

VCI_E INVALIDARG Parameter pszGuid points to an invalid buffer
VCI_E_BUFFER_OVERFLOW Buffer specified in pszGuid is not large enough for the character string.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

45 (114)
5.1.13 vciGuidToCharw
Converts a globally unique ID (GUID) into a character string.
HRESULT EXTERN C vciGuidToCharW (
REFGUID rGuid,
PWCHAR pwszGuid,
LONG cbSize
);
Parameter
Parameter Dir. Description
rGuid [in] Reference to the globally unique ID that is to be converted into a
character string.
pwszGuid [out] Pointer to the buffer for the 0-terminated character string. If run
successfully, the function saves the converted GUID in the specified
memory area. The buffer must have space for at least 39 characters
including the final O-character.
cbSize [in] Size of the in pszGuid specified buffer in Bytes

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_INVALIDARG Parameter pwszGuid points to an invalid buffer.
VCI_E_BUFFER_OVERFLOW Buffer specified in pwszGuid is not large enough for the character string.

5.1.14 vciCharToGuidA
Converts a O-terminated character string into a globally unique ID (GUID).

HRESULT EXTERN C vciCharToGuidA (
PCHAR pszGuid,
PGUID pGuid

)i

Parameter

Parameter Dir. Description

pszGuid [in] Pointer to the O-terminated character string to be converted

pGuid [out] Address of a variable of type GUID. If run successfully, the function
returns the converted ID in this variable.

Return Value

Return value Description

VCI OK Function succeeded

VCI_E INVALIDARG Parameter pszGuid or pGuid points to an invalid buffer.

VCI_E_FAIL Character string specified in pszGuid can not be converted into a valid ID.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

46 (114)
5.1.15 vciCharToGuidW
Converts a O-terminated wide character string into a globally unique ID (GUID).
HRESULT EXTERN C vciCharToGuidW (
PWCHAR pwszGuid,
PGUID pGuid
);
Parameter
Parameter Dir. Description
pwszGuid [in] Pointer to the O-terminated character string to be converted
pGuid [out] Address of a variable of type GUID. If run successfully, the function
returns the converted ID in this variable.

Return Value

Return value Description
VCI_OK

Function succeeded

VCI_E INVALIDARG Parameter pwszGuid or pGuid points to an invalid buffer.

VCI_E FAIL

Character string specified in pszGuid can not be converted into a valid ID.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 47 (114)

5.2 Functions for the Device Management

5.2.1 Functions for Accessing the Device List
vciEnumDeviceOpen

Opens the list of all fieldbus adapters registered with the VCI.

HRESULT EXTERN C vciEnumDeviceOpen (
PHANDLE hEnum
)

Parameter
Parameter Dir. Description
hEnum [out] Address of a variable of type HANDLE. If run successfully, the function

returns the handle of the opened device list in this variable. In the case
of an error, the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

vciEnumDeviceClose

Closes the device list opened with the function vciEnumDeviceOpen.

HRESULT EXTERN C vciEnumDeviceClose (
HANDLE hEnum
)

Parameter
Parameter Dir. Description
hEnum [in] Handle of the device list to be closed

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

After the function is called, the handle that is specified in hEnum is no longer valid and must no
longer be used.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 48 (114)

vciEnumDeviceNext

Determines the description of a fieldbus adapter of the device list and increases the internal list
index so that a subsequent call of the function supplies the description to the next adapter.

HRESULT EXTERN C vciEnumDeviceNext (
HANDLE hEnum,
PVCIDEVICEINFO pInfo

)i

Parameter

Parameter Dir. Description

hEnum [in] Handle to the opened device list

pinfo [out] Address of a data structure of type VCIDEVICEINFO. If run successfully,
the function saves information on the adapter in the memory area
specified here.

Return Value

Return value Description

VCI OK Function succeeded

VCI_E NO MORE ITEMS List does not contain any more entries.

!=VCI OK Error, more information about error code provides the function
VciFormatError

vciEnumDeviceReset

Resets the internal list index of the device list, so that a subsequent call of vciEnumDeviceNext
returns the first entry of the list again.

HRESULT EXTERN C vciEnumDeviceReset (
HANDLE hEnum
)i

Parameter
Parameter Dir. Description
hEnum [in] Handle of the opened device list

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 49 (114)

vciEnumDeviceWaitEvent

Waits until the content of the device list changes, or a given waiting time has elapsed.

HRESULT EXTERN C vciEnumDeviceWaitEvent (
HANDLE hEnum,
UINT32 dwTimeout

)i

Parameter

Parameter Dir. Description

hEnum [in] Handle of the opened device list

dwTimeout [in] Specifies the timeout interval, in milliseconds. The function returns if the

interval elapses, even if the device list has not changed. If dwTimeout is
zero, the function tests the state of the device list and returns
immediately. If dwTimeout is INFINITE (OxFFFFFFFF), the timeout interval
of the function never elapses.

Return Value

Return value Description

VCI_OK Contents of the device list changed since the last call of
vciEnumDeviceWaitEvent

VCI_E TIMEOUT Contents of the device list have not changed and the timeout period specified
in the dwTimeout parameter elapsed.

Remark

The contents of the device list changes when an adapter is added or removed.

vciFindDeviceByHwid

Searches for an adapter with a certain hardware ID.

HRESULT EXTERN C vciFindDeviceByHwid (
REFGUID rHwid,
PVCIID pvVciid

)

Parameter
Parameter Dir. Description
rHwid [in] Reference to the unique hardware ID of the adapter to search for
pVciid [out] Address of a variable type VCIID. If run successfully, the function returns
the device ID of the found adapter in this variable.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The device ID returned by this function can be used to open the adapter with the function
vciDeviceOpen. Each adapter has a unique hardware ID, which also remains valid after a restart
of the system.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

50 (114)

vciFindDeviceByClass

Searches for an adapter with a certain device class.

HRESULT EXTERN C vciFindDeviceByClass (
REFGUID rClass,
UINT32 dwInst,

PVCIID pVciid

);

Parameter

Parameter Dir. Description

rClass [in] Reference to the device class of the adapter to search for

dwinst [in] Instance number of the adapter to search for. If more than one adapter
of the same class is available, this value defines the number of the
adapter to search for in the device list. Value 0 selects the first adapter
of the specified device class.

pVciid [out] Address of a variable type VCIID. If run successfully, the function returns

the device ID of the found adapter in this variable.

Return Value

Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
Remark

The device ID returned by this function can be used to open the adapter with the function

vciDeviceOpen.

vciSelectDeviceDlg

Displays a dialog window to select an adapter from the current device list on the screen.

HRESULT EXTERN C vciSelectDeviceDlg (

HWND hwndParent,
PVCIID pVciid

)

Parameter
Parameter Dir. Description
hwndParent [in] Handle of the higher order window. If value ZERO is specified here, the
dialog window has no higher order window.
pVciid [out] Address of a variable type VCIID. If run successfully, the function returns

the device ID of the selected adapter in this variable.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E ABORT

Dialog window closed without having selected a CAN interface

I=VCI OK

Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 51 (114)

Remark

The device ID returned by this function can be used to open the adapter with the function
vciDeviceOpen.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 52 (114)

5.2.2 Functions for Accessing VCI Devices
vciDeviceOpen

Opens the fieldbus adapter with the specified device ID.

HRESULT EXTERN C vciDeviceOpen (
REFVCIID rVciid,
PHANDLE phDevice

)

Parameter
Parameter Dir. Description
rVciid [in] Device ID of the adapter to be opened
phDevice [out] Address of a variable of type HANDLE. If run successfully, the function
returns the handle of the opened adapter in this variable. In the event
of an error, the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

vciDeviceOpenDlg

Displays a dialog window to select a fieldbus adapter on the screen and opens the adapter
selected by the user.

HRESULT EXTERN C vciDeviceOpenDlg (
HWND hwndParent,
PHANDLE phDevice

)

Parameter
Parameter Dir. Description
hwndParent [in] Handle of the higher order window. If value ZERO is specified here, the
dialog window has no higher order window.
phDevice [out] Address of a variable of type HANDLE. If run successfully, the function
saves the handle of the selected and opened adapter in this variable. In
the event of an error the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 53 (114)

vciDeviceClose

Closes an opened fieldbus adapter.

HRESULT EXTERN C vciDeviceClose (
HANDLE hDevice
)i

Parameter
Parameter Dir. Description
hDevice [in] Handle of the adapter to be closed. The specified handle must come
from a call of one of the functions vciDeviceOpen or vciDeviceOpenDlg.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

After the function is called, the handle specified in hDevice is no longer valid and must no longer
be used.

vciDeviceGetInfo

Determines general information on a fieldbus adapter.

HRESULT EXTERN C vciDeviceGetInfo (
HANDLE hDevice,
PVCIDEVICEINFO pInfo

);

Parameter

Parameter Dir. Description

hDevice [in] Handle of the opened adapter

pinfo [out] Address of a structure of type VCIDEVICEINFO. If run successfully, the
function saves information on the adapter in the memory area specified
here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function

VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 54 (114)

vciDeviceGetCaps

Determines information on the technical equipment of a fieldbus adapter.

HRESULT EXTERN C vciDeviceGetCaps (
HANDLE hDevice,
PVCIDEVICECAPS pCaps

)i

Parameter

Parameter Dir. Description

hDevice [in] Handle of the opened adapter

pCaps [out] Address of a structure of type VCIDEVICECAPS. If run successfully, the
function saves the information on the technical equipment in the
memory area specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 55 (114)

5.3 Functions for CAN Access
5.3.1 Control Unit

canControlOpen

Opens the control unit of a CAN connection on a fieldbus adapter.

HRESULT EXTERN C canControlOpen (
HANDLE hDevice,
UINT32 dwCanNo,
PHANDLE phCanCtl

)

Parameter

Parameter Dir. Description

hDevice [in] Handle of the fieldbus adapter

dwCanNo [in] Number of the CAN connection of the control unit to be opened. Value
0 selects the first connection, value 1 the second connection and so on.

phCancCtl [out] Pointer to a variable of type HANDLE. If run successfully, the function
returns the handle of the opened CAN controller in this variable. In the
event of an error, the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

If the value OXFFFFFFFF is specified in the parameter dwCanNo, the function displays a dialog
window to select an adapter and a CAN connection on the screen. In this case the function
expects the handle of a higher order window, or the value ZERO if no higher order window is
available, in the parameter hDevice instead of the handle of the adapter.

canControlClose

Closes an opened CAN controller.

HRESULT EXTERN C canControlClose (
HANDLE hCanCtl
)i

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the CAN controller to be closed. The specified handle must
come from a call of the function canControlOpen.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 56 (114)

Remark

After the function is called, the handle specified in hCanCtl is no longer valid and must no longer
be used.

canControlGetCaps

Determines the features of a CAN connection.

HRESULT EXTERN C canControlGetCaps (
HANDLE hCanCt1l,
PCANCAPABILITIES2 pCanCaps

)

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

pCanCaps [out] Pointer to a structure of type CANCAPABILITIES2. If run successfully, the
function saves the features of the CAN connection in the memory area
specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canControlGetStatus
Determines the current settings and the current status of the controller of a CAN connection.

HRESULT EXTERN C canControlGetStatus (
HANDLE hCanCtl,
PCANLINESTATUS2 pStatus

);

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

pStatus [out] Pointer to a structure of type CANLINESTATUS2. If run successfully, the
function saves the current settings and the status of the controller in the
memory area specified here.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 57 (114)

canControlDetectBitrate

Determines the current bit rate of the bus to which the CAN connection is connected.

HRESULT EXTERN C canControlDetectBitrate (
HANDLE hCanCtl,
UINTS8 bOpMode,
UINTS8 bExMode,
UINT16 wTimeout,
UINT32 dwCount,
PCANBTP paBtpSDR,
PCANBTP paBtpFDR,
PUINT32 pdwIndex
)i

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

bOpMode [in] Operating mode of the CAN controller

bExMode [in] Extended operating mode of the CAN controller

wTimeout [in] Maximum waiting time in milliseconds between two messages on the
bus.

dwCount [in] Number of elements in the bit timing tables paBtpSDR and paBtpFDR

paBtpSDR [in] Pointer to a table with the arbitration bit rates. The table must contain
at least dwCount elements.

paBtpFDR [in] Pointer to a table with the fast bit rates. The table must contain at least
dwCount elements.

pdwindex [out] Pointer to a variable of type UINT32. If run successfully, the function
returns the table index of the found bit timing values in this variable.

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_TIMEOUT Bit rate detection failed due to timeout, no message transmitted within the
time specified in wTimeout

Remark

More information on the bus timing values in the tables paBtpSDR and paBtpSDR is given in
chapter Initializing the Controller. To detect the bit rate, the CAN controller is operated in “Listen
only” mode. It is therefore necessary for two further bus nodes to transmit messages when the
function is called. If no messages are transmitted within the time specified in wTimeout, the
function returns the value VCI_E TIMEOUT. If run successfully, the function receives the
variables to which the parameter pdwindex shows the index (including 0) of the found values in
the bus timing tables. The corresponding table values can then be used to initialize the CAN
controller with the function canControlinitialize. The function can be called in the undefined and
stopped status.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

58 (114)

canControlinitialize

Sets the operating mode and bit rate of a CAN connection.

HRESULT EXTERN C canControlInitialize (

HANDLE hCanCtl,
UINTS8 bOpMode,
UINT8 bExMode,
UINT8 bSFMode,
UINTS8 bEFMode,
UINT32 dwSFIds,
UINT32 dwEFIds,
PCANBTP pBtpSDR,
PCANBTP pBtpFDR
) i
Parameter
Parameter Dir. Description
hCancCtl [in] Handle of the opened CAN controller
bOpMode [in] Operating mode of the CAN controller
CAN_OPMODE_STANDARD: reception of 11-bit ID messages
CAN_OPMODE_EXTENDED: reception of 29-bit ID messages
CAN OPMODE ERRFRAME: error are indicated to the application via
special CAN messages
CAN_OPMODE LISTONLY: listen only mode (TX passive)
CAN_OPMODE_LOWSPEED: use of low speed bus interface
CAN_OPMODE_AUTOBAUD: automatic bit rate detection
bExMode [in] Extended operating mode of the CAN controller
CAN_EXMODE_DIABLED: no extended operation
CAN_EXMODE EXTDATA: extended data length
CAN_EXMODE_FASTDATA: fast data bit rate
CAN_EXMODE_NONISO: non ISO conform frames
bSFMode [in] Operating mode of 11-bit ID filter
bEFMode [in] Operating mode of 29-bit ID filter
dwSFlds [in] Size of 11-bit ID filter
dwEFlds [in] Size of 29-bit ID filter
pBtpSDR [in] Pointer to the timing parameters used for standard (nominal) bit rate
(see Remarks)
pBtpFDR [in] Pointer to the timing parameters used for fast data bit rate. This
parameter can be NULL if bExMode is not set to CAN_EXMODE_
FASTDATA.
Return Value
Return value Description

VCI OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
Remark

The function resets the controller hardware internally according to the function canControlReset
and then initializes the controller with the specified parameters. The function can be called from
every controller status. For more information on the bus timing values in the parameters
pBtpSDR and pBtpFDR see chapter Initializing the Controller.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

59 (114)

canControlReset

Resets the controller hardware and resets the message filters of a CAN connection.

HRESULT EXTERN_ C canControlReset (

HANDLE hCanCtl

)i

Parameter
Parameter Dir. Description
hCancCtl [in] Handle of the opened CAN controller

Return Value

Return value

Description

VCI OK Function succeeded
!=VCI _OK Error, more information about error code provides the function
VciFormatError
Remark

The function resets the controller hardware, removes the set acceptance filter, deletes the
contents of the filter lists and switches the controller “offline”. At the same time, the message
flow between the controller and the connected message channels is interrupted. When the
function is called, a currently active transmit process of the controller is aborted. This may lead
to transmission errors or to a faulty message telegram on the bus.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

60 (114)

canControlStart

Starts or stops the controller of a CAN connection.

HRESULT EXTERN_ C canControlStart (
HANDLE hCanCtl,
BOOL fStart

)

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

fStart [in] Value TRUE starts and value FALSE stops the CAN controller.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

A call of the function is only successful when the CAN controller was previously configured with
the function canControlinitialize. After a successful start of the CAN controller, it is actively
connected to the bus. Incoming CAN messages are forwarded to all configured and activated
message channels, or transmit messages issued by the message channels to the bus. A call of the
function with the value FALSE in the parameter fStart switches the CAN controller “offline”. The
message transfer is thus interrupted and the CAN controller switched to passive status. Unlike
the function canControlReset, the set acceptance filter and filter lists are not altered with a stop.
Neither does the function simply stop a running transmit process of the controller but ends it in
such a way that no faulty telegram is transferred to the bus.

canControlGetFilterMode

Retrieves the current operating mode for the specified CAN message filter.

HRESULT EXTERN C canControlGetFilterMode (
HANDLE hCanCtl,
BOOL fExtend,
PUINT8 pbMode

)i

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

fExtend [in] Filter selection. If this parameter is set to TRUE, the function selects the
29-bit filter. If this parameter is set to FALSE, the function selects the
11-bit filter.

pbMode [out] Pointer to an buffer where the function stores the current operating
mode of the specified filter (see canControlSetFilterMode).

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 61 (114)

canControlSetFilterMode

Sets the operating mode for the specified CAN message filter. The function clears the current
filter settings, if the mode changes. The function can be called only if the controller is in init
mode.

HRESULT EXTERN C canControlSetFilterMode (
HANDLE hCanCtl,
BOOL fExtend,
UINT8 bMode,
PUINT8 pbPrev
)i

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

fExtend [in] Filter selection. If this parameter is set to TRUE, the function selects the
29-bit filter. If this parameter is set to FALSE, the function selects the
11-bit filter.

bMode [in] Operating mode (CAN_FILTER_ STD for 11-bit standard filter, CAN
FILTER EXT for 29-bit extended filter)

pbPrev [out] Optional pointer to an buffer where the function stores the previous
operating mode of the specified filter. This parameter can be NULL.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canControlSetAccFilter

Sets the 11- or 29-bit acceptance filter of a CAN connection.

HRESULT EXTERN C canControlSetAccFilter (
HANDLE hCanCtl,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask
);

Parameter

Parameter Dir. Description

hCancCtl [in] Handle of the opened CAN controller

fExtend [in] Selection of the acceptance filter. The 11-bit acceptance filter is selected
with value FALSE and the 29-bit acceptance filter with value TRUE.

dwCode [in] Bit sample of the identifier(s) to be accepted including RTR-bit

dwMask [in] Bit sample of the relevant bits in dwCode. If a bit has the value 0 in
dwMask, the corresponding bit in dwCode is not used for the
comparison. If a bit has the value 1, it is relevant for the comparison.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 62 (114)

canControlAddFilterlds
Enters one or more IDs (CAN IDs) in the 11- or 29-bit filter list of a CAN connection.

HRESULT EXTERN C canControlAddFilterIds (
HANDLE hCanCtl,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask
);

Parameter

Parameter Dir. Description

hCanctl [in] Handle of the opened CAN controller

fExtend [in] Selection of the filter list. The 11-bit filter list is selected with value
FALSE and the 29-bit filter list with value TRUE.

dwCode [in] Bit sample of the identifier(s) to be identified including RTR-bit

dwMask [in] Bit sample of the relevant bits in dwCode. If a bit has the value 0 in
dwMask, the corresponding bit in dwCode is ignored. If a bit has the
value 1, it is relevant.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canControlRemfFilterlds
Removes one or more IDs (CAN IDs) from the 11- or 29-bit filter list of a CAN connection.

HRESULT EXTERN C canControlRemFilterIds (
HANDLE hCanCtl,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask
)

Parameter

Parameter Dir. Description

hCanctl [in] Handle of the opened CAN controller

fExtend [in] Selection of the filter list. The 11-bit filter list is selected with value
FALSE and the 29-bit filter list with value TRUE.

dwCode [in] Bit sample of the identifier(s) to be removed including RTR-bit

dwMask [in] Bit sample of the relevant bits in dwCode. If a bit has the value 0 in
dwMask, the corresponding bit in dwCode is ignored. If a bit has the
value 1, it is relevant.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

63 (114)

5.3.2 Message Channel

canChannelOpen

Opens or creates a message channel for a CAN connection of a fieldbus adapter.

HRESULT EXTERN C canChannelOpen (
HANDLE hbDevice,
UINT32 dwCanNo,

BOOL fExclusive,

PHANDLE phCanChn

)

Parameter

Parameter Dir. Description

hDevice [in] Handle of the fieldbus adapter

dwCanNo [in] Number of the CAN connection for which a message channel is to be
opened. Value 0 selects the first connection, value 1 the second
connection and so on.

fExclusive [in] Defines whether the connection is used exclusively for the channel to be
opened. If value TRUE is specified here, the CAN connection is used
exclusively for the new message channel. With value FALSE, more than
one message channel can be opened for the CAN connection.

phCanChn [out] Pointer to a variable of type HANDLE. If run successfully, the function

returns the handle of the opened CAN message channel in this variable.
In the event of an error, the variable is set to ZERO.

Return Value

Return value

Description

VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
Remark

If the value TRUE is specified in the parameter fExclusive, no more message channels can be
opened after a successful call of the function. This means that the program that first calls the
function with the value TRUE in the parameter fExclusive has exclusive control over the message
flow on the CAN connection. If the value OXFFFFFFFF is specified in the parameter dwCanNo, the
function displays a dialog window to select an adapter and a CAN connection on the screen. In
this case the function expects the handle of a higher order window, or the value ZERO if no
higher order window is available, in the parameter hDevice instead of the handle of the adapter.
If the message channel is no longer required, the handle returned in phCanChn should be
released again with the function canChannelClose.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 64 (114)

canChannelClose

Closes an opened message channel.

HRESULT EXTERN C canChannelClose (
HANDLE hCanChn
)i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the message channel to be closed. The specified handle must
come from a call of the function canChannelOpen.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

After the function is called, the handle specified in hCanChn is no longer valid and must no
longer be used.

canChannelGetCaps

Determines the features of a CAN connection.

HRESULT EXTERN C canChannelGetCaps (
HANDLE hCanChn,
PCANCAPABILITIES2 pCanCaps

):

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

pCanCaps [out] Pointer to a structure of type CANCAPABILITIES2. If run successfully, the
function saves the features of the CAN connection in the memory area
specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 65 (114)

canChannelGetStatus

Determines the current status of a message channel as well as the current settings and the
current status of the controller that is connected to the channel.

HRESULT EXTERN C canChannelGetStatus (
HANDLE hCanChn,
PCANCHANSTATUS2 pStatus

);

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

pStatus [out] Pointer to a structure of type CANCHANSTATUS?2. If run successfully, the
function saves the current status of the channel and controller in the
memory area specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canChannelGetControl
Tries to acquire exclusive access to the CAN controller.

HRESULT EXTERN C canChannelGetControl (
HANDLE hCanChn,
PHANDLE phCanCtl

)i

Parameter
Parameter Dir. Description
hCanChn [in] Handle of the opened message channel
phCancCtl [out] Points to a variable where the function stores the handle to the CAN
controller. This variable is set to NULL if the CAN controller is currently in
use.
Return Value
Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 66 (114)

canChannellnitialize

Initializes the receive and transmit buffers of a message channel.

HRESULT EXTERN C canChannelInitialize (
HANDLE hCanChn,
UINT16 wRxFifoSize,
UINT16 wRxThreshold,
UINT16 wTxFifoSize,
UINT16 wTxThreshold,
UINT32 dwFilterSize,
UINT8 DbFilterMode
)i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

WRxFifoSize [in] Size of the receive buffer in number of CAN messages

WRxThreshold [in] Threshold value for the receive event. The event is triggered when the
number of messages in the receive buffer reaches or exceeds the
number specified here.

wTxFifoSize [in] Size of the transmit buffer in number of CAN messages

wTxThreshold [in] Threshold value for the transmit event. The event is triggered when the
number of free entries in the transmit buffer reaches or exceeds the
number specified here.

dwfilterSize [in] Number of CAN message IDs supported by the extended ID filter. The
standard ID filter support always all of the possible 2048 IDs. If this
parameter is set to 0 CAN message filtering is disabled.

bFilterMode [in] Initial mode of the CAN message filter. This can be one of the following
values:

CAN_FILTER_LOCK: lock filter

CAN_FILTER_PASS: bypass filter

CAN_FILTER_ INCL: inclusive filtering

CAN_FILTER_EXCL: exclusive filtering

The filter mode can be combined with CAN FILTER SRRA to pass all
self reception messages sent from other channels which are also
connected to the same CAN controller as this channel.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

A value greater than 0 must be specified for the size of the receive and of the transmit buffer,
otherwise the function returns an error code according to “Invalid parameter”. The values
specified in the parameters wRxFifoSize and wTxFifoSize define the lower limit for the size of the
buffers. The actual size of a buffer may be larger than the specified value, as the memory used
for this is reserved page-wise. If the function is called for an already initialized channel, the
function first deactivates the channel, then releases the available FIFOs and creates two new
FIFOs with the required dimensions.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

67 (114)

canChannelGetFilterMode

Retrieves the current operating mode for the specified CAN message filter.

HRESULT EXTERN C canChannelGetFilterMode (
HANDLE hCanChn,
BOOL fExtend,

PUINT8 pbMode

);

Parameter
Parameter Dir. Description
hCanChn [in] Handle of the opened message channel
fExtend [in] Filter selection. If this parameter is set to TRUE, the function selects the
29-bit filter. If this parameter is set to FALSE, the function selects the
11-bit filter.
pbMode [out] Pointer to an buffer where the function stores the current operating

mode of the specified filter (see canChannelSetFilterMode).

Return Value

Return value

Description

VCI OK

Function succeeded

I=VCI OK

Error, more information about error code provides the function
VciFormatError

canChannelSetFilterMode

Sets the operating mode for the specified CAN message filter. The function clears the current
filter settings if the mode changes. The function can only be called if the channel is currently

disabled.

HRESULT EXTERN C canChannelSetFilterMode (
HANDLE hCanChn,
BOOL fExtend,

UINT8 bMode,
PUINTS8 pbPrev

)i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

fExtend [in] Filter selection. If this parameter is set to TRUE, the function selects the
29-bit filter. If this parameter is set to FALSE, the function selects the
11-bit filter.

bMode [in] Operating mode

pbPrev [out] Optional pointer to an buffer where the function stores the previous

operating mode of the specified filter. This parameter can be NULL.

Return Value

Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function

VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 68 (114)

canChannelSetAccFilter
Sets the 11-bit or 29-bit acceptance filter of the message channel.

HRESULT EXTERN C canChannelSetAccFilter (
HANDLE hCanChn,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask
);

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

fExtend [in] Filter selection. If this parameter is set to TRUE, the function sets the
29-bit filter acceptance filter. If this parameter is set to FALSE, the
function sets the 11-bit acceptance filter.

dwCode [in] Acceptance code inclusive RTR bit

dwMask [in] Acceptance mask that specifies the relevant bits within dwCode.
Relevant bits are specified by a 1 in the corresponding bit position, non
relevant bits are 0.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canChannelAddFilterlds
Registers the specified CAN message identifier or group of identifiers at the specified filter list.

HRESULT EXTERN C canChannelAddFilterIds (
HANDLE hCanChn,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask

)i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

fExtend [in] Filter selection. If this parameter is set to TRUE, the function adds the
IDs to the 29-bit filter list. If this parameter is set to FALSE, the function
adds the IDs to the 11-bit filter list.

dwCode [in] Message identifier (inclusive RTR) to add to the filter list

dwMask [in] Mask that specifies the relevant bits within dwCode. Relevant bits are
specified by a 1 in the corresponding bit position, non relevant bits are 0.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 69 (114)

Remark

Depending on the current setting of the filter mode (CAN FILTER INCL or CAN FILTER
EXCL) IDs registered within the filter list are either accepted or rejected. The function can only
be called if the channel is currently disabled.

canChannelRemFilterlds

Removes the specified CAN message identifier or group of identifiers from the specified filter list.
The function can only be called if the channel is currently disabled.

HRESULT EXTERN C canChannelRemFilterIds (
HANDLE hCanChn,
BOOL fExtend,
UINT32 dwCode,
UINT32 dwMask
)

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

fExtend [in] Filter selection. If this parameter is set to TRUE, the function removes
the IDs from the 29-bit filter list. If this parameter is set to FALSE, the
function removes the IDs from the 11-bit filter list.

dwCode [in] Message identifier (inclusive RTR) to remove from the filter list

dwMask [in] Mask that specifies the relevant bits within dwCode. Relevant bits are
specified by a 1 in the corresponding bit position, non relevant bits are 0.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

70 (114)

canChannelActivate

Activates or deactivates a message channel.

HRESULT EXTERN C canChannelActivate (
HANDLE hCanChn,
BOOL fEnable

)

Parameter
Parameter Dir. Description
hCanChn [in] Handle of the opened message channel
fEnable [in] With value TRUE, the function activates the message flow between the
CAN controller and the message channel, with value FALSE the
function deactivates the message flow.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

As a default setting, the message channel is deactivated after opening or initializing. For the
channel to receive messages from the bus, or send messages to the bus, the bus must be
activated. At the same time, the CAN controller must be in the “online” status. For more
information see function canControlStart and chapter Initializing the Controller. After activation
of the channel, messages can be written in the transmit buffer with canChannelPostMessage or
canChannelSendMessage, or read from the receive buffer with the functions
canChannelPeekMessage and canChannelReadMessage.

canChannelPeekMessage

Reads the next CAN message from the receive buffer of a message channel.

HRESULT EXTERN C canChannelPeekMessage (
HANDLE hCanChn,
PCANMSG2 pCanMsg

) i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

pCanMsg [out] Pointer to a CANMSG2 structure where the function stores the retrieved
CAN message. If this parameter is set to NULL, the function simply
removes the next CAN message from the receive FIFO.

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_RXQUEUE_EMPTY Currently no CAN message available in receive FIFO

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 71 (114)

Remark

The function returns immediately to the calling program if no message is available for reading.

canChannelPeekMsgMult

Retrieves the next CAN messages from the receive FIFO of the specified CAN channel. The
function does not wait for messages to be received from the CAN bus.

HRESULT EXTERN C canChannelPeekMsgMult (
HANDLE hCanChn,
PCANMSG2 paCanMsg,
UINT32 dwCount,
PUINT32 pdwDone
);

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

paCanMsg [out] Array of buffers where the function stores the retrieved CAN messages.
If this parameter is set NULL, the function simply removes the specified
number of CAN messages from the receive FIFO.

dwCount [in] Number of messages available in buffer

pdwDone [out] Pointer to a variable where the function stores the number of CAN
messages actually read. This parameter is optional and can be NULL.

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_RXQUEUE_EMPTY Currently no CAN message available

!=VCI OK Error, more information about error code provides the function
VciFormatError

canChannelPostMessage

Writes a CAN message in the transmit buffer of the specified message channel.

HRESULT EXTERN C canChannelPostMessage (
HANDLE hCanChn,
PCANMSG2 pCanMsg

);

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

pCanMsg [in] Pointer to an initialized structure of type CANMSG2 with the CAN
message to be transmitted.

Return Value

Return value Description

VCI_OK Function succeeded

VCI_E_TXQUEUE_FULL Not enough free space available within the transmit FIFO

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

72 (114)

Remark

The function does not wait for the message to be transmitted on the bus.

canChannelPostMsgMult

Places the specified CAN messages in the transmit FIFO of the CAN channel without waiting for
the messages to be transmitted over the CAN bus.

HRESULT EXTERN C canChannelPostMsgMult (

HANDLE hCanChn,
PCANMSG2 paCanMsg,
UINT32 dwCount,
PUINT32 pdwDone

) i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

paCanMsg [in] Pointer to array of transmit messages

dwCount [in] Number of valid messages in buffer

pdwDone [out] Pointer to a variable where the function stores the number of CAN
messages written. This parameter is optional and can be NULL.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E TXQUEUE FULL

Not enough free space available within the transmit FIFO

I=VCI OK

Error, more information about error code provides the function
VciFormatError

canChannelWaitRxEvent

Waits until a CAN message is received from the CAN bus or the timeout interval elapses.

HRESULT EXTERN C canChannelWaitRxEvent (

HANDLE hCanChn,
UINT32 dwTimeout
)i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Maximum waiting time in milliseconds. The function returns to the caller

with the error code VCI_E_TIMEOUT if the receive event has not
occurred in the time specified here. With value INFINITE (OxFFFFFFFF),
the function waits until the receive event has occurred.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E TIMEOUT

Timeout interval elapsed

I=VCI OK

Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

73 (114)

Remark

The receive event is triggered as soon as the number of messages in the receive buffer reaches
or exceeds the set threshold. See the description of the function canChannelinitialize.

To check whether the receive event has already occurred without blocking the calling program,
the value 0 can be specified in the parameter dwTimeout when calling the function. If the handle
specified in hCanChn is closed from another thread, the function ends the current function
control and returns with a return value not equal to VCI_OK.

canChannelWaitTxEvent

Waits until a CAN message can be written to the transmit FIFO or the timeout interval elapses.

HRESULT EXTERN C canChannelWaitTxEvent (
HANDLE hCanChn,
UINT32 dwTimeout

)

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Timeout interval, in milliseconds. The function returns if the interval

elapses, even if no message can be written to the transmit FIFO. If this
parameter is zero, the function tests if a message can be written and
returns immediately. If this parameter is INFINITE (OXFFFFFFFF), the
timeout interval of the function never elapses.

Return Value

Return value Description

VCI_OK Function succeeded

VCI E TIMEOUT Timeout interval elapsed

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The transmit event is triggered as soon as the transmit buffer contains the same number of free
entries as the set threshold or more. See the description of the function canChannellnitialize. To
check whether the transmit event has already occurred without blocking the calling program, the
value 0 can be specified in the parameter dwTimeout when the function is called. If the handle
specified in hCanChn is closed from another thread, the function ends the current function
control and returns with a return value not equal to VCI_OK.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

74 (114)

canChannelReadMessage

Retrieves the next CAN message from the receive FIFO of the specified CAN channel. The
function waits for a message to be received from the CAN bus.

HRESULT EXTERN C canChannelReadMessage (
HANDLE hCanChn,

UINT32 dwTimeout,

PCANMSG2 pCanMsg

)

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Maximum waiting time in milliseconds. The function returns to the caller
with the error code VCI_E_TIMEOUT if no message is read or received
within the specified time. With value INFINITE (OXFFFFFFFF), the function
waits until a message has been read.

pCanMsg [out] Pointer to a CANMSG2 structure where the function stores the retrieved

CAN message. If this parameter is set to NULL, the function simply
removes the next CAN message from the FIFO.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E RXQUEUE EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function
VciFormatError

Remark

If the handle specified in hCanChn is closed from another thread, the function ends the current
function control and returns with a return value not equal to VCI_OK.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

75 (114)

canChannelReadMsgMult

Read the next CAN messages from the receive FIFO of the specified CAN channel. The function
waits for CAN messages to be received from the CAN bus.

HRESULT EXTERN C canChannelReadMsgMult (

HANDLE hCanChn,

UINT32 dwTimeout,
PCANMSG2 paCanMsg,

UINT32 dwCount,
PUINT32 pdwDone
) i

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Maximum waiting time in milliseconds. The function returns to the caller
with the error code VCI_E_TIMEOUT if no message is read or received
within the specified time. With value INFINITE (OXFFFFFFFF), the function
waits until a message has been read.

paCanMsg [out] Pointer to message buffer

dwCount [in] Number of slots in message buffer

pdwDone [out] Number of received CAN messages

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E_RXQUEUE_EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function
VciFormatError

Remark

If the handle specified in hCanChn is closed from another thread, the function ends the current
function control and returns with a return value not equal to VCI_OK.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 76 (114)

canChannelSendMessage

Places the specified CAN message in the transmit FIFO. The function waits until the message is
placed in the transmit FIFO, but does not wait for the message to be transmitted over the CAN
bus.

HRESULT EXTERN C canChannelSendMessage (
HANDLE hCanChn,
UINT32 dwTimeout,
PCANMSG2 pCanMsg

)7

Parameter

Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Timeout interval, in milliseconds. The function returns if the interval
elapses, even if no message has been written to the transmit FIFO. If this
parameter is zero, the function tries to write a message to the transmit
FIFO and returns immediately. If this parameter is INFINITE (OxFFFFFFFF),
the timeout interval of the funciton never elapses.

pCanMsg [in] Pointer to an initialized structure of type CANMSG2 with the CAN
message to be transmitted.

Return Value

Return value Description
VCI OK Function succeeded
VCI_E_TXQUEUE_FULL dwTimeout is zero and there is currently no free space available within the

transmit FIFO.

VCI_E_TIMEOUT Specified timeout interval elapsed and there is no free space available within
the transmit FIFO.

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The function only waits until the message is written in the transmit buffer, but not until the
message is transmitted on the bus. If the handle specified in hCanChn is closed from another
thread, the function ends the current function control and returns with a return value not equal
to VCI OK.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 77 (114)

canChannelSendMsgMult

Places the specified CAN messages in the transmit FIFO. The function waits until the messages
can be placed into the transmit FIFO, but does not wait for the messages to be transmitted over
the CAN bus.

HRESULT EXTERN C canChannelSendMsgMult (
HANDLE hCanChn,
UINT32 dwTimeout,
PCANMSG2 paCanMsg,
UINT32 dwCount,
PUINT32 pdwDone
)i

Parameter
Parameter Dir. Description

hCanChn [in] Handle of the opened message channel

dwTimeout [in] Timeout interval, in milliseconds. The function returns if the interval
elapses, even if no message has been written to the transmit FIFO. If this
parameter is zero, the function tries to write a message to the transmit
FIFO and returns immediately. If this parameter is INFINITE (OxFFFFFFFF),
the timeout interval of the function never elapses.

paCanMsg [in] Pointer to array of CAN message to transmit

dwCount [in] Number of valid entries in message array

pdwDone [out] Number of sent CAN messages

Return Value

Return value Description
VCI_OK Function succeeded
VCI_E_TXQUEUE_FULL dwTimeout is zero and there is currently no free space available within the

transmit FIFO.

VCI_E_TIMEOUT Specified timeout interval elapsed and there is no free space available within
the transmit FIFO.

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The function only waits until the last message is written in the transmit buffer, but not until the
last message is transmitted on the bus. If the handle specified in hCanChn is closed from another
thread, the function ends the current function control and returns with a return value not equal
to VCI OK.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 78 (114)

5.3.3 Cyclic Transmit List
canSchedulerOpen

Opens the cyclic transmit list of a CAN connection on a fieldbus adapter.

HRESULT EXTERN C canSchedulerOpen (
HANDLE hbDevice,
UINT32 dwCanNo,
PHANDLE phCanShd

)i

Parameter

Parameter Dir. Description

hDevice [in] Handle of the fieldbus adapter

dwCanNo [in] Number of the CAN connection of the transmit list to be opened. Value
0 selects the first connection, value 1 the second connection and so on.

phCanShd [out] Pointer to a variable of type HANDLE. If run successfully, the function
returns the handle of the opened transmit list in this variable. In the
event of an error, the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

If the value OxFFFFFFFF is specified in the parameter dwCanNo, the function displays a dialog
window to select an adapter and a CAN connection on the screen. In this case the function
expects the handle of a higher order window, or the value ZERO if no higher order window is
available, in the parameter hDevice instead of the handle of the adapter.

canSchedulerClose

Closes an opened cyclic transmit list.

HRESULT EXTERN C canSchedulerClose (
HANDLE hCanShd
)

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the transmit list to be closed. The specified handle must come
from a call of the function canSchedulerOpen.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

After the function is called, the handle specified in hCanShd is no longer valid and must no longer
be used.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 79 (114)
canSchedulerGetCaps
Determines the features of the CAN connection of the specified cyclic transmit list.
HRESULT EXTERN C canSchedulerGetCaps (
HANDLE hCanShd,
PCANCAPABILITIES2 pCanCaps
);
Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
pCanCaps [out] Pointer to a structure of type CANCAPABILITIES2. If run successfully, the
function saves the features of the CAN connection in the memory area
specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

canSchedulerGetStatus

Determines the current status of the transmit task and of all registered transmit objects of a

cyclic transmit list.

HRESULT EXTERN C canSchedulerGetStatus (
HANDLE hCansShd,
PCANSCHEDULERSTATUS2 pStatus

)i

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
pStatus [out] Pointer to a structure of type CANSCHEDULERSTATUS2 If run
successfully, the function saves the current status of all cyclic transmit
objects in the memory area specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function returns the current status of all 16 transmit objects in the table
CANSCHEDULERSTATUS2.abMsgStat. The list index provided by the function

canSchedulerAddMessage can be used to request the status of an individual transmit object, i.e.

abMsgStat[Index] contains the status of the transmit object with the specified index.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 80 (114)
canSchedulerGetControl
Tries to acquire exclusive access to the CAN controller.
HRESULT EXTERN C canSchedulerGetControl (
HANDLE hCanShd,
PHANDLE phCanCtl
);
Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
phCancCtl [out] Points to a variable where the function stores the handle to the CAN
controller. This variable is set to NULL if the CAN controller is currently in
use.
Return Value
Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError

canSchedulerActivate

Starts or stops the transmit task of the cyclic transmit list and thus the cyclic transmit process of
all currently registered transmit objects.

HRESULT EXTERN C canSchedulerActivate (
HANDLE hCanShd,
BOOL fEnable

);

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
fEnable [in] With value TRUE the function activates, and with value FALSE
deactivates, the cyclic transmit process of all currently registered
transmit objects.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The function can be used to start all registered transmit objects simultaneously. For this, all
transmit objects are first set to started status with the function canSchedulerStartMessage. A
subsequent call of this function with the value TRUE for the parameter fEnable then guarantees
a simultaneous start. If the function is called with the value FALSE for the parameter fEnable,
processing of all registered transmit objects is stopped simultaneously.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 81 (114)

canSchedulerReset

Stops the transmit task and removes all transmit objects from the specified cyclic transmit list.

HRESULT EXTERN C canSchedulerReset (
HANDLE hCanShd
)i

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list

Return Value

Return value Description

VCI OK Function succeeded

!=VCI _OK Error, more information about error code provides the function
VciFormatError

canSchedulerAddMessage

Adds a new transmit object to the specified cyclic transmit list.

HRESULT EXTERN C canSchedulerAddMessage (

HANDLE hCanShd,
PCANCYCLICTXMSG2 pMessage,
PUINT32 pdwIndex
);
Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
pMessage [in] Pointer to an initialized structure of type CANCYCLICTXMSG2 with the

transmit object

pdwindex [out] Pointer to a variable of type UINT32. If run successfully, the function
returns the list index of the newly added transmit object in this variable.
In the event of an error, the variable is set to value OxFFFFFFFF (-1). This
index is required for all further function calls.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The cyclic transmit process of the newly added transmit object begins only after a successful call
of the function canSchedulerStartMessage. In addition, the transmit list must be active (see
canSchedulerActivate).

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 82 (114)

canSchedulerRemMessage

Stops processing of a transmit object and removes it from the specified cyclic transmit list.

HRESULT EXTERN C canSchedulerRemMessage (
HANDLE hCanShd,
UINT32 dwIndex

)

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
dwindex [in] List index of the transmit object to be removed. The list index must
come from a previous call of the function canSchedulerAddMessage

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

After the function is called, the list index specified in dwindex is invalid and must no longer be
used.

canSchedulerStartMessage

Starts a transmit object of the specified cyclic transmit list.

HRESULT EXTERN C canSchedulerStartMessage (
HANDLE hCanShd,
UINT32 dwIndex,
UINT16 wRepeat

)i

Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
dwindex [in] List index of the transmit object to be started. The list index must come
from a previous call of the function canSchedulerAddMessage.
wRepeat [in] Number of the cyclic transmit repeats. With value 0, the transmit
process is repeated infinitely. The specified value must be in the range 0
to 65535.
Return Value
Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
Remark

The cyclic transmit process only starts if the transmit task is active when the function is called. If
the transmit task is inactive, the transmit process is delayed until the next call of the function

canSchedulerActivate.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

83 (114)
canSchedulerStopMessage
Stops a transmit object of the specified cyclic transmit list.
HRESULT EXTERN C canSchedulerStopMessage (
HANDLE hCanShd,
UINT32 dwIndex
);
Parameter
Parameter Dir. Description
hCanShd [in] Handle of the opened transmit list
dwindex [in] List index of the transmit object to be stopped. The list index must come
from a previous call of the function canSchedulerAddMessage.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

84 (114)

5.4 Functions for LIN Access

5.4.1 Control Unit

linControlOpen

Opens the control unit of a LIN connection on a fieldbus adapter.

HRESULT EXTERN C linControlOpen (

HANDLE hDevice,

UINT32 dwLinNo,

PHANDLE phLinCtl
)

Parameter

Parameter Dir. Description

hDevice [in] Handle of the fieldbus adapter

dwLinNo [in] Number of the LIN connection of the control unit to be opened. Value 0
selects the first connection, value 1 the second connection and so on.

phLinCtl [out] Pointer to a variable of type HANDLE. If run successfully, the function
returns the handle of the opened LIN controller in this variable. In the
event of an error, the variable is set to ZERO.

Return Value

Return value

Description

VCI OK

Function succeeded

I=VCI OK

Error, more information about error code provides the function
VciFormatError

linControlClose

Closes an opened LIN controller.

HRESULT EXTERN C linControlClose (

HANDLE hLinCtl
)

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the LIN controller to be closed. The specified handle must
come from a call of the function canControlOpen.

Return Value

Return value

Description

VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function
VciFormatError
Remark

After the function is called, the handle specified in hLinCtl is no longer valid and must no longer

be used.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 85 (114)

linControlGetCaps

Determines the features of a LIN connection.

HRESULT EXTERN C linControlGetCaps (
HANDLE hLinCtl,
PLINCAPABILITIES pLinCaps

)

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the opened LIN controller

pLinCaps [out] Pointer to a structure of type LINCAPABILITIES. If run successfully, the
function saves the features of the LIN connection in the memory area
specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

linControlGetStatus

Determines the current settings and the current status of the controller of a LIN connection.

HRESULT EXTERN C linControlGetStatus (
HANDLE hLinCtl,
PLINLINESTATUS2 pStatus

)

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the opened LIN controller

pStatus [out] Pointer to a structure of type LINLINESTATUS2. If run successfully, the
function saves the current settings and the status of the controller in the
memory area specified here.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 86 (114)

linControlinitialize

Sets the operating mode and bit rate of a LIN connection.

HRESULT EXTERN C linControlInitialize (
HANDLE hLinCt1l,
UINT8 DbMode,
UINT16 wBitrate

)

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the opened LIN controller

bMode [in] Operating mode of the LIN controller

LIN OPMODE_SLAVE: Slave mode, activated by default

LIN OPMODE MASTER: Master mode (if supported, see
LINCAPABILITIES)

LIN OPMODE ERRORS: error are indicated to the application via
special LIN messages

wBitrate [in] Bit rate of the LIN controller. Valid values are between 1000 and 20000
bit/s, resp. between the values that are specified by LIN BITRATE
MIN and LIN BITRATE MAX. If the controller supports automatic bit
rate detection, enter LIN_BITRATE AUTO to activate the automatic
bit rate detection.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

linControlReset

Resets the specified LIN controller to its initial state. The function aborts the current message
transmission and switches the LIN controller into INIT mode.

HRESULT EXTERN C linControlReset (
HANDLE hLinCtl
)

Parameter
Parameter Dir. Description
hLinCtl [in] Handle of the opened LIN controller

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

87 (114)

linControlStart

Starts or stops the controller of a LIN connection.

HRESULT EXTERN C linControlStart (

HANDLE hLinCt1l,
BOOL fStart
)

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the opened LIN controller

fStart [in] Value TRUE starts and value FALSE stops the LIN controller.

Return Value

Return value

Description

VCI OK

Function succeeded

I=VCI OK

Error, more information about error code provides the function

VciFormatError

linControlWriteMessage

Transmits the specified message either directly to the controller that is connected to the LIN bus
or assigns the message to the response table of the controller.

HRESULT EXTERN C linControlWriteMessage (

HANDLE hLinCtl,

BOOL fSend,

PLINMSG pLinMsg
) i

Parameter

Parameter Dir. Description

hLinCtl [in] Handle of the opened LIN controller

fSend [in] Determines if a message is directly transmitted to the bus or if it is
assigned to the response table of the controller. With TRUE the
message is transmitted directly, with FALSE the message is assigned to
the response table.

pLinMsg [in] Pointer to initialized structure of type LINMSG with the LIN message to
be transmitted

Return Value

Return value Description
VCI_OK Function succeeded
!=VCI OK Error, more information about error code provides the function

VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 88 (114)

5.4.2 Message Monitor

The interface provides functions to install a message monitor between the application and th
eLIN bus.

linMonitorOpen

Opens a LIN message monitor on the specified LIN controller.

HRESULT EXTERN C linMonitorOpen (
HANDLE hDevice,
UINT32 dwLinNo,
BOOL fExclusive,
PHANDLE phLinMon
);

Parameter

Parameter Dir. Description

hDevice [in] Handle of the device where the LIN controller is located

dwLinNo [in] Number of the LIN controller to open, value 0 selects the first LIN
connection, value 1 the second LIN connection, etc (see Remarks)

fExclusive [in] If this parameter is set to TRUE the function tries to acquire exclusive
access to the LIN message monitor, and no further monitors can be
created. If set to FALSE the function opens the monitor in shared mode
and any number of message monitors can be created for the LIN
connection.

phLinMon [out] Pointer to a variable of type HANDLE. If run successfully, the function
returns the handle of the opened LIN controller in this variable. In the
event of an error, the variable is set to ZERO.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

If dwLinNo is set to OxFFFFFFFF, the function shows a dialog box which allows the user to
select the VCI device and LIN controller. In this case hDevice must contain the handle to the
window that owns the dialog box.

linMonitorClose

Closes an opened LIN monitor.

HRESULT EXTERN C linMonitorClose (
HANDLE hLinMon
)

Parameter
Parameter Dir. Description
hLinMon [in] Handle of the opened LIN monitor

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

89 (114)

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The handle specified by the parameter hLinMon is not longer valid after the function returns and
must not be used any longer.

linMonitorGetCaps

Determines the features of a LIN connection.

HRESULT EXTERN C linMonitorGetCaps (
HANDLE hLinMon,
PLINCAPABILITIES pLinCaps

)i

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

plLinCaps [out] Points to a LINCAPABILITIES structure where the function stores the
capabilities of the LIN controller.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

linMonitorGetStatus
Determines the current settings and the current status of the controller of a LIN connection.

HRESULT EXTERN C linMonitorGetStatus (
HANDLE hLinMon,
PLINMONITORSTATUS pStatus

)7

Parameter
Parameter Dir. Description
hLinMon [in] Handle of the opened LIN monitor
pStatus [out] Points to a LINMONITORSTATUS structure where the function stores the
current status of the LIN monitor.

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions 90 (114)

linMonitorinitialize

Initializes the FIFO size of a LIN monitor.

HRESULT EXTERN C linMonitorInitialize (
HANDLE hLinMon,
UINT16 wFifoSize,
UINT16 wThreshold

)

Parameter
Parameter Dir. Description
hLinMon [in] Handle of the opened LIN monitor
wFifoSize [in] Size of receive FIFO in number of LIN messages
wThreshold [in] Threshold value for the receive event. Event is triggered when the
number of messages in the receive FIFO reaches the defined number.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

linMonitorActivate

This function activates or deactivates the LIN monitor. After activating the monitor, LIN messages
are received from the LIN bus by calling the receive functions. After deactivating the monitor, no
further messages are received from the LIN bus.

HRESULT EXTERN C linMonitorActivate (
HANDLE hLinMon,
BOOL fEnable

)i

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

fEnable [in] TRUE activates the connection between LIN controller and message
monitor, FALSE deactivates the connection (default: FALSE).

Return Value

Return value Description

VCI_OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The LIN controller must be started, otherwise no messages are received from the LIN bus (see
also linControlStart).

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

91 (114)

linMonitorPeekMessage

Retrieves the next LIN message from the receive FIFO of the specified monitor. The function does
not wait for a message to be received from the LIN bus.

HRESULT EXTERN C linMonitorPeekMessage (

HANDLE hLinMon,
PLINMSG pLinMsg
) i

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

pLinMsg [out] Pointer to a LINMSG structure where the function stores the retrieved
LIN message. If this parameter is set to NULL, the function simply
removes the next LIN message from the receive FIFO.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E_RXQUEUE EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function
VciFormatError

linMonitorPeekMsgMult

Retrieves the next LIN messages from the receive FIFO of the specified LIN monitor. The function
does not wait for messages to be received from the LIN bus.

HRESULT EXTERN C linMonitorPeekMsgMult (

HANDLE hLinMon,
PLINMSG palinMsg,
UINT32 dwCount,
PUINT32 pdwDone

) i

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

palinMsg [out] Array of buffers where the function stores the retrieved LIN messages. If
this parameter is set NULL, the function simply removes the specified
number of LIN messages from the receive FIFO.

dwCount [in] Number of available slots in LIN message buffer

pdwDone [out] Pointer to a variable where the function stores the number of LIN
messages actually read. This parameter is optional and can be NULL.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E_RXQUEUE EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function
VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions 92 (114)

linMonitorWaitRxEvent

This function waits until a LIN message is received from the LIN bus or the timeout interval
elapses.

HRESULT EXTERN C linMonitorWaitRxEvent (
HANDLE hLinMon,
UINT32 dwTimeout

);

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

dwTimeout [in] Maximum waiting time in milliseconds. The function returns to the caller

with the error code VCI_E_TIMEOUT if the receive event has not
occurred in the time specified here. With value INFINITE (OxFFFFFFFF),
the function waits until the receive event has occurred.

Return Value

Return value Description

VCI OK Function succeeded

!=VCI OK Error, more information about error code provides the function
VciFormatError

Remark

The transmit event is triggered as soon as the transmit buffer contains the same number of free
entries as the set threshold or more. See the description of the function linMonitorlnitialize. To
check whether the transmit event has already occurred without blocking the calling program, the
value 0 can be specified in the parameter dwTimeout when the function is called. If the handle
specified in hLinMon is closed from another thread, the function ends the current function
control and returns with a return value not equal to VCI_OK.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Functions

93 (114)

linMonitorReadMessage

Reads the next LIN message from the receive buffer of a LIN message monitor.

HRESULT EXTERN C linMonitorReadMessage (

HANDLE hLinMon,
UINT32 dwTimeout,
PLINMSG pLinMsg

)

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

dwTimeout [in] Timeout interval, in milliseconds. The function returns if the interval
elapses, even if no message is received from the LIN bus. If this
parameter is zero, the function tests if a message is available and
returns immediately. If this parameter is INFINITE (OXFFFFFFFF), the
timeout interval of the function never elapses.

pLinMsg [out] Pointer to a LINMSG structure where the function stores the retrieved
LIN message. If this parameter is set to NULL, the function simply
removes the next LIN message from the FIFO.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E RXQUEUE EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function
VciFormatError

Remark

If the handle specified in hLinMon is closed from another thread, the function ends the current
function control and returns with a return value not equal to VCI_OK.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Functions

94 (114)

linMonitorReadMsgMult

Read the next LIN messages from the receive FIFO of the specified LIN monitor. The function
waits for LIN messages to be received from the LIN bus.

HRESULT EXTERN C linMonitorReadMsgMult (
HANDLE hLinMon,

UINT32 dwTimeout,

PLINMSG palinMsg,
UINT32 dwCount,
PUINT32 pdwDone

)i

Parameter

Parameter Dir. Description

hLinMon [in] Handle of the opened LIN monitor

dwTimeout [in] Timeout interval, in milliseconds. The function returns if the interval
elapses, even if no message is received from the LIN bus. If this
parameter is zero, the function tests if a message is available and
returns immediately. If this parameter is INFINITE (OXFFFFFFFF), the
timeout interval of the function never elapses.

palinMsg [out] Array of buffers where the function stores the retrieved LIN messages. If
this parameter is set NULL, the function simply removes the specified
number of LIN messages from the receive FIFO.

dwCount [in] Size of the array pointed to by palLinMsg in count of LIN messages

pdwDone [out] Pointer to a variable where the function stores the number of LIN

messages actually read. This parameter is optional and can be NULL.

Return Value

Return value

Description

VCI OK

Function succeeded

VCI_E_RXQUEUE_EMPTY

Currently no CAN message available

VCI_E TIMEOUT

Timeout interval elapses without a CAN message available.

I=VCI OK

Error, more information about error code provides the function

VciFormatError

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

95 (114)

6 Data Types
6.1 VCI-Specific Data Types

6.1.1 VCIID

Unique VCI object identifier.

typedef struct VCIID

{

LUID AsLuid;
T64 AsInt64d;

} VCIID, *PVCIID;
Member Dir. Description
AsLuid [out] ID in form of a LUID. Data type LUID is defined in Windows.
AsInt64 [out] ID as a signed 64 bit integer
6.1.2 VCIVERSIONINFO

The structure describes the VCI and OS version information.

typedef struct VCIVERSIONINFO

{

UINT32 VciMajorVersion;

UINT32 VciMinorVersion;

UINT32 VciRevNumber;

UINT32 VciBuildNumber;

UINT32 OsMajorVersion;

UINT32 OsMinorVersion;

UINT32 OsBuildNumber;

UINT32 OsPlatformId;
} VCIVERSIONINFO, *PVCIVERSIONINEFO;
Member Dir. Description
VciMajorVersion [out] Major version number of VCI
VciMinorVersion [out] Minor version number of VCI
VciRevNumber [out] Revision number of VCI
VciBuildNumber [out] Build number of VCI
OsMajorVersion [out] Major version number of operating system
OsMinorVersion [out] Minor version number of operating system
OsBuildNumber [out] Build number of operating system
OsPlatformld [out] Platform id of operating system

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 96 (114)
6.1.3 VCILICINFO
The structure describes the VCI license information.
typedef struct VCILICINFO
{
GUID DeviceClass;
UINT32 MaxDevices;
UINT32 MaxRuntime;
UINT32 Restrictions;
} VCILICINFO, *PVCILICINFO;
Member Dir. Description
DeviceClass [out] Class ID of the licensed product
MaxDevices [out] Maximum number of allowed devices (0=no limit)
MaxRuntime [out] Maximum runtime in seconds (0=no limit)
Restrictions [out] Additional restrictions:
VCI_LICX NORESTRICT: no additional restrictions
VCI_LICX SINGLEUSE: single application use only
6.1.4 VCIDRIVERINFO

The structure describes the VCI driver information.

typedef struct VCIDRIVERINFO

{

VCIID VciObjectId;

GUID DriverClass;

UINT16 MajorVersion;
UINT1l6 MinorVersion;

} VCIDRIVERINFO, *PVCIDRIVERINFO;
Member Dir. Description
VciObjectld [out] Unique VCI device identifier. The VCI assigns a system wide unique id to every
running VCI device.
DriverClass [out] Driver class identifier
MajorVersion [out] Major driver version number
MinorVersion [out] Minor driver version number

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 97 (114)
6.1.5 VCIDEVICEINFO
The structure describes the VCI device information.
typedef struct VCIDEVICEINFO
{
VCIID VciObjectId;
GUID DeviceClass;
UINT8 DriverMajorVersion;
UINT8 DriverMinorVersion;
UINT16 DriverBuildVersion;
UINT8 HardwareBranchVersion;
UINT8 HardwareMajorVersion;
UINT8 HardwareMinorVersion;
UINT8 HardwareBuildVersion;
GUID OR CHARS UniqueHardwareId;
CHAR Description([128];
CHAR Manufacturer[126];
UINT16 DriverReleaseVersion;
} VCIDEVICEINFO, *PVCIDEVICEINFO;
Member Dir. Description
VciObjectld [out] Unique VCI object identifier
DeviceClass [out] Device class identifier
DriverMajorVersion [out] Major version number of driver
DriverMinorVersion [out] Minor version number of driver
DriverBuildVersion [out] Build version number of driver
HardwareBranchVersion | [out] Branch version number of hardware
HardwareMajorVersion | [out] Major version number of hardware
HardwareMinorVersion | [out] Minor version number of hardware
HardwareBuildVersion [out] Build version number of hardware
UniqueHardwareld [out] Unique hardware identifier
Description [out] Device description
Manufacturer [out] Device manufacturer
DriverReleaseVersion [out] Release version number of driver
6.1.6 VCIDEVICECAPS

The structure describes the capabilities of a VCI device.

typedef struct VCIDEVICECAPS

{

UINT16 BusCtrlCount;

UINT16 BusCtrlTypes[32];

} VCIDEVICECAPS, *PVCIDEVICECAPS;
Member Dir. Description
BusCtrlCount [out] Number of supported bus controllers
BusCtrlTypes [out] Array of supported bus controllers

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

98 (114)

6.1.7 VCIDEVRTINFO

The structure describes the run-time status information of a VCI device.

typedef struct VCIDEVRTINFO

{

UINT32 dwCommId;
UINT32 dwStatus;

} VCIDEVRTINFO, *PVCIDEVRTINFO;

Member Dir. Description

dwCommld [out] ID of currently running communication layer
dwStatus [out] Runtime status flags

VCI_DEVRTI_STAT LICEXP: runtime of license expired
VCI DEVRTI_ STAT DISCON: device driver disconnected

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 99 (114)
6.2 CAN-Specific Data Types
6.2.1 CANBTP
The structure describes the bit timing parameter.
typedef struct CANBTP
{
UINT32 dwMode;
UINT32 dwBPS;
UINT16 wTS1;
UINT16 wTS2;
UINT16 wSJW;
UINT16 wTDO;
} CANBTP, *PCANBTP;
Member Dir. Description
dwMode [out] Operating mode. This bit field determines how the following fields are
interpreted. For the operating mode a logical combination of one or more of the
following constants can be specified:
CAN BTMODE RAW: Native mode. The fields dwBPS, wTS1, wTS2, wSJW and
wTDO contain hardware specific values for the corresponding registers of the
controller. The values of these fields must be inside the limits which are
determined by the fields sSdrRangeMin resp. sFdrRangeMin and sSdrRangeMax
resp. sFdrRangeMax of structure CANCAPABILITIESZ2.
CAN BTMODE_TSM: Activating triple sampling mode
dwBPS [out] Transmitting rate in bits per second. If in field dwMode the bit CAN_ BTMODE
RAW is set, the hardware specific value for the baud rate prescaler register is
expected here. If not, the bit rate in bits per second is expected.
wTS1 [out] Length of time segment 1. If in field dwMode the bit CAN_BTMODE _RAW is set,
the hardware specific number of time quanta for the time segment 1 is
expected here. If not, the value defines the length of this time segment in
relation to the total number of time quanta per bit.
wTs2 [out] Length of time segment 2. If in field dwMode the bit CAN_ BTMODE _RAW is set,
the hardware specific number of time quanta for the time segment 2 is
expected here. If not, the value defines the length of this time segment in
relation to the total number of time quanta per bit.
wSIW [out] Jump width for re-synchronization. If in field dwMode the bit CAN_ BTMODE
RAW is set, the hardware specific number of time quanta for the re-
synchronization is expected here. If not, the value defines the length of the
jumping width in relation to the total number of time quanta per bit.
wTDO [out] Offset to the transceiver delay (or Secondary Sample Point SSP) that is
automatically determined by the controller. Value is only relevant with fast data
bit rate. If in field dwMode the bit CAN_BTMODE RAW is set, the hardware
specific number of CAN clock cycles is expected here. If not, the value defines
the Secondary Sample Point (SSP) in relation to the total number of time quanta
per bit (example: if wWTS1+wTS2=100 and wTDO=65 the SSP is 65% of a bit time).
Value 0 deactivates the SSP. If value OXFFF is specified, the SSP offset is
calculated internally based on the other parameters (simplified SSP positioning).
For more information about the formula see CiA specification 601-3 Part 3,
chapter System Design Recommendation.
6.2.2 CANCAPABILITIES2

The structure describes the CAN controller capabilities.

typedef struct CANCAPABILITIES2

{
UINT16
UINT16
UINT32
UINT32
CANBTP
CANBTP
CANBTP

wCtrlType;
wBusCoupling;
dwFeatures;
dwCanClkFreq;
sSdrRangeMin;
sSdrRangeMax;
sFdrRangeMin;

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

100 (114)

CANBTP
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

} CANCAPABILITIES2,

sFdrRangeMax;
dwTscClkFreq;
dwTscDivisor;
dwCmsClkFreq;
dwCmsDivisor;
dwCmsMaxTicks;
dwDtxClkFreq;
dwDtxDivisor;
dwDtxMaxTicks;

*PCANCAPABILITIES2;

Member

Dir.

Description

wCtrlType

[out]

Type of CAN controller. The value of this field is corresponding to a CAN
TYPE constant defined in cantype.h.

wBusCoupling

[out]

Type of bus coupling. For the bus coupling the following values are defined:
CANiBUsciUNDEFINED:undeﬁned

CAN BUSC_LOWSPEED: CAN controller has a low speed coupling.

CAN BUSC_HIGHSPEED: CAN controller has a high speed coupling.

dwFeatures

[out]

Supported features. Value is a logical combination of one or more of the
following constants:

CAN FEATURE STDOREXT: CAN controller supports 11 or 29 bit messages,
exclusive, but not both formats simultaneously.

CAN_FEATURE_STDANDEXT: CAN controller supports 11 and 29 bit messages
simultaneously.

CAN_FEATURE_RMTFRAME: CAN controller supports remote transmission
request (RTR) messages.

CAN_ FEATURE_ ERRFRAME: CAN controller supports returns error frames.
CAN_FEATURE_BUSLOAD: CAN controller supports bus load calculation.

CAN FEATURE IDFILTER: CAN controller supports allows exact message
filtering. B

CAN_ FEATURE_LISTONLY: CAN controller supports listen only mode.

CAN FEATURE SCHEDULER: cyclic transmitting list provided
CAN_FEATURE_GENERRFRM: CAN controller supports error frame generation.
CAN_FEATURE_DELAYEDTX: CAN controller supports delayed transmitting of
messages.

CAN FEATURE SINGLESHOT: CAN controller supports Single shot mode. If a
message is of type Single Shot the controller does not try to transmit again if the
message is not transmitted with the first attempt.
CAN_FEATURE_HIGHPRIOR: CAN controller supports transmitting high
priority messages. Messages with high priority are assigned to a transmitting
buffer by the controller, the transmitting buffer is prior to messages in the
normal transmitting buffer. Messages of high priority are transmitted with
priority to the bus.

CAN FEATURE AUTOBAUD: CAN controller supports automatic bit rate
detection. B

CAN_FEATURE_EXTDATA: CAN controller provides messages with extended
data field, if this bit is not set at a CAN FD controller, it supports maximally 8
byte in the data field.

CAN FEATURE FASTDATA: CAN controller supports transmission with fast
data bit rate.

CAN FEATURE ISOFRAME: CAN controller supports ISO conform frame
(exclusively CAN FD)

CAN_ FEATURE_NONISOFRAME: CAN controller supports non ISO conform
frame (different CRC computation, exclusively CAN FD)

CAN FEATURE_64BITTSC: 64 bit time stamp counter

dwCanClkFreq

[out]

Frequency in hertz of the primary clock generator. The bit rate generator
defines together with the values in the structure CANBTP the bit transmission
rate for the standard resp. for the nominal arbitration bit rate and the high data
bit rate.

sSdrRangeMin

[out]

Minimum bit timing values for standard resp. the nominal arbitration bit rate

sSdrRangeMax

[out]

Maximum bit timing values for standard Minimum bit timing values for standard
resp. the nominal arbitration bit rate bit rate

sFdrRangeMin

[out]

Minimum bit timing values for fast data bit rate. All fields of the structure
contain the value 0 if the controller do not support a high data bit rate. See
CAN FEATURE FASTDATA.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 101 (114)

Member Dir. Description

sFdrRangeMax [out] Maximum bit timing values for fast data bit rate. All fields of the structure
contain the value 0 if the controller do not support a high data bit rate. See
CAN_FEATURE_FASTDATA.

dwTscClkFreq [out] Frequency in Hertz of clock generator which is used to create the time stamps
of CAN messages (Time Stamp Counter).

dwTscDivisor [out] Divisor for the message time stamp counter. Resolution of the time stamps of
CAN messages is calculated by the values specified here divided by the
frequency of the primary clock generator.

dwCmsClkFreq [out] Frequency in Hertz of the clock generator of the cyclic transmitting list (Cyclic
Message Timer). If no cyclic transmitting list is available the field contains value
0.

dwCmsDivisor [out] Divisor for the clock generator of the cyclic transmitting list. Frequency of cyclic

transmitting list is calculated by the frequency of the cyclic message timer
divided by the value specified here. If no cyclic transmitting list is available the
field contains value 0.

dwCmsMaxTicks [out] Maximum cyclic time of the cyclic transmitting list in timer ticks. If no cyclic
transmitting list is available the field contains value 0.

dwDtxClkFreq [out] Frequency in Hertz of clock generator, that is used for delayed transmission of
CAN messages (Delay Timer). If delayed transmission is not supported the field
contains value 0.

dwDtxDivisor [out] Divisor for the clock generator for delayed transmission of messages. The
resolution of the timer for delayed transmission of messages is calculated by the
values specified here divided by the frequency of the delay timer. If delayed
transmission is not supported the field contains value 0.

dwDtxMaxTicks [out] Maximum delay time in number of timer ticks. If delayed transmission is not
supported the field contains value 0.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Data Types

102 (114)

6.2.3 CANINITLINE2

The structure is used to initialize the extended CAN control unit.

typedef struct CANINITLINEZ

{
UINT8 bOpMode;
UINT8 bExMode;
UINT8 bSFMode;
UINT8 bEFMode;
UINT32 dwSFIds;
UINT32 dwEFIds;
CANBTP sBtpSdr;
CANBTP sBtpFdr;

} CANINITLINE2, *PCANINITLINEZ;

Member Dir.

Description

bOpMode [out]

Operating mode of controller. For the operating mode a logical combination of
one or more of the following constants can be specified:
CAN_OPMODE_STANDARD: controller accepts messages with 11 bit identifier.
CAN_OPMODE_EXTENDED: controller accepts messages with 29 bit identifier.
CAN_ OPMODE_LISTONLY: controller is used in Listen Only mode (TX passive).
CAN_OPMODE_ERRFRAME: controller supports error frames.
CAN_OPMODE_LOWSPEED:controller uses low speed bus coupling.
CAN_OPMODE_AUTOBAUD: if supported by the controller the controller
performs an automatic detection of the bit rate during the initialization.
Controller must be connected with running system. If this bit is set the bit timing
parameters specified in the fields sBtpSdr and sBtpFdr are ignored.

bExMode [out]

Extended operating mode. If supported by the controller, a logical combination
of one or more of the following constants can be specified:
CAN_EXMODE_DISABLED: no extended operating mode is activated. The
value also must be specified with all other controllers that do not support CAN
FD operating mode. For more information see description of field dwFeatures of
structure CANCAPABILITIESZ2.

CAN_ EXMODE_EXTDATA: allows messages with extended data length up to 64
bytes.

CAN_ EXMODE FASTDATA: allows fast data bit rate (exclusively available with
CAN FD controller with the feature CAN_ FEATURE NONISOFRM)
CAN_EXMODE_NONISO:: supports non ISO conform frames.

bSFMode [out]

Default value for the operating mode of 11 bit filter

bEFMode [out]

Default value for the operating mode of 29 bit filter

dwSFlds [out]

Number of CAN IDs supported by the 11 bit filter. With value 0 no filter is
specified and all messages with 11 bit ID are allowed to pass. The operating
mode specified in bSFMode is not considered.

dwEFIds [out]

Number of CAN IDs supported by the 29 bit filter. With value 0 no filter is
specified and all messages with 29 bit ID are allowed to pass. The operating
mode specified in bEFMode is not considered.

sBtpSdr [out]

Bit timing parameter for default or nominal bit rate resp. for bit rate during the
arbitration phase. For more information see description of data type CANBTP.

sBtpFdr [out]

Bit timing parameter for fast data bit rate. Field is exclusively relevant if the
controller supports the fast data transmission and if constant CAN EXMODE
FASTDATA in field bExMode is specified. For more information see description
of data type CANBTP.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

103 (114)

6.2.4 CANLINESTATUS2

The structure describes the CAN controller status.

typedef struct CANLINESTATUSZ

{
UINT8
UINT8
UINT8
UINT8

bOpMode;
bExMode;
bBusLoad;
bReserved;

CANBTP sBtpSdr;
CANBTP sBtpFdr;
UINT32 dwStatus;

} CANLINESTATUS2, *PCANLINESTATUSZ2;

Member Dir. Description

bOpMode [out] Current operating mode of controller. Value is a logical combination of one or
more CAN_OPMODE_ (see CANINITLINE?2)

bExMode [out] Current extended operating mode of controller. Value is a logical combination of
one or more CAN_EXMODE_ (see CANINITLINEZ).

bBusLoad [out] Bus load in the second before the call of the function in percentage (0 to 100).
Value shows a state. To monitor the bus load over a time span use appropriate
analysis tools. Value is exclusively valid if calculation of bus load is supported by
the controller (see CANCAPABILITIESZ2).

bReserved [out] Reserved, set to 0

sBtpSdr [out] Current bit timing parameter for nominal bit rate resp. for bit rate during the
arbitration phase.

SsBtpFdr [out] Current bit timing parameter for fast data bit rate

dwStatus [out] Current status of CAN controller. Value is a logical combination of one or more

of the following constants:

CAN_STATUS_ TXPEND: CAN controller is currently transmitting a message to
the bus (transmission pending).

CAN_STATUS_OVRRUN: data overflow in the receiving buffer of the CAN
controller had happened.

CAN_STATUS_ERRLIM: overflow of an error counter of the CAN controller
has happened.

CAN_STATUS_ BUSOFF: CAN controller has shifted to state BUS-OFF.
CAN_STATUS_ININIT: CAN controllerisin stopped state.

CAN_ STATUS BUSCERR: Faulty bus coupling, only relevant with CAN
interfaces with CAN low-speed transceiver and activated low-speed CAN bus.
The output pin ERR of the CAN low-speed transceiver is low active. If the output
pin ERR of the CAN low-speed transceiver is set to 0, the flag DCAN_STATUS_
BUSCERR in the CAN controller status is set to 1. If the output pin ERR of the
CAN low-speed transceiver is set to 1, the flag DCAN_STATUS_BUSCERR in the
CAN controller status is set to 0. This means, if an error occurs on the CAN bus
line of the CAN low-speed transceiver, the flag DCAN_STATUS_BUSCERR in the
CAN controller status is set to 1.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 104 (114)
6.2.5 CANCHANSTATUS2
The structure describes the CAN message channel status.
typedef struct CANCHANSTATUSZ
{
CANLINESTATUS2 sLineStatus;
BOOL8 fActivated;
BOOL8 fRxOverrun;
UINT8 DbRxFifoLoad;
UINT8 bTxFifoLoad;
} CANCHANSTATUS2, *PCANCHANSTATUS2;
Member Dir. Description
sLineStatus [out] Current status of CAN controller (see CAN_STATUS in CANLINESTATUS?2)
fActivated [out] Shows if message channel is active (TRUE) or inactive (FALSE).
fRxOverrun [out] Signalizes an overflow in the receiving buffer with the value TRUE.
bRxFifoLoad [out] Receive FIFO load in percent (0..100)
bTxFifoLoad [out] Transmit FIFO load in percent (0..100)
6.2.6 CANRTINFO

The structure describes the CAN run-time status information.

typedef struct CANRTINFO
{
UINT32 dwNumChannels;
UINT32 dwActChannels;
UINT32 dwLockStatus;
UINT16 wRxFifoLoad;
UINT16 wTxFifoLoad;
} CANRTINFO, *PCANRTINFO;
Member Dir. Description
dwNumChannels [out] Total number of open channels
dwActChannels [out] Number of active channels
dwlockStatus [out] Lock status of various interfaces
CAN_RTI_ LOCKSTAT_ CTL: ICanControl locked
CAN_RTI_LOCKSTAT_SHD: ICanScheduler locked
CAN_RTI LOCKSTAT CHN: exclusive channel lock
WRxFifoLoad [out] Device receive FIFO load in percent (0..100)
wTxFifoLload [out] Device transmit FIFO load in percent (0..100)

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Data Types 105 (114)
6.2.7 CANSCHEDULERSTATUS2
The structure describes the current status of the cyclic transmitting list.
typedef struct CANSCHEDULERSTATUSZ
{
CANLINESTATUS2 sLineStatus;
UINT8 bTaskStat;
UINT8 abMsgStat[l6];
} CANSCHEDULERSTATUS2, *PCANSCHEDULERSTATUSZ2;
Member Dir. Description
sLineStatus [out] Current state of CAN line controller (see CAN_STATUS in
CANLINESTATUS?2)
bTaskStat [out] Current status of cyclic transmitting task
CAN CTXTSK STAT STOPPED: cyclic transmit task stopped
CAN CTXTSK_STAT RUNNING: cyclic transmit task running
abMsgStat [out] Table with status of all 16 transmitting objects. Each table entry can take one of
the following values:
CAN_CTXTSK_STAT EMPTY: entry is not assigned to a transmitting object
resp. the entry is currently not used.
CAN CTXTSK_STAT BUSY: processing of message in progress
CAN_CTXTSK_STAT DONE: processing of message completed
6.2.8 CANMSGINFO

The data type combines different information about a CAN message in a union. The individual
values can either be addresses via byte fields or via bus bit fields.

typedef struct CANMSGINFO

{

struct

{

UINT8 DbType;

union

UINT8 bReserved;
UINT8 bFlags2;

o

{

UINT8 bFlags;
UINT8 bAccept;

} Bytes;

struct
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

} Bits;

{

type

ssm
hpm
edl
fdr
esi
res
dlc
ovr
srr
rtr
ext
afc

} CANMSGINFO,

Ne Ne Ne Ne N

o ~e

Ne Ne Ne N

W W R
<

~e

8;

*PCANMSGINFO;

The information are accessed byte by byte via the following byte fields:

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

106 (114)

Member

Dir.

Description

bType

[out]

Message type (see bit field type)

bReserved

[out]

Reserved

bFlags2

[out]

Extended message flags

CAN MSGFLAGS2_ SSM: [bit 0] single shot mode (see bit field ssm)
CAN_ MSGFLAGS2_ HPM: [bit 1] high priority message (see bit field hpm)
CAN_MSGFLAGS2_ EDL: [bit 2] extended data length (see bit field edl)
CAN MSGFLAGS2_ FDR: [bit 3] fast data bit rate (see bit field fdr)

CAN MSGFLAGS2_ ESTI: [bit 4] error state indicator (see bit field esi)
CAN MSGFLAGS2 RES: [bit 5..7] reserved bits (see bit field res)

bFlags

[out]

Standard message flags

CAN MSGFLAGS_DLC: [bit 0] data length code (see bit field dic)
CAN_MSGFLAGS_OVR: [bit 4] data overrun flag (see bit field ovr)

CAN_ MSGFLAGS_SRR: [bit 5] self reception request (see bit field srr)

CAN MSGFLAGS_RTR: [bit 6] remote transmission request (see bit field rtr)
CAN_MSGFLAGS_EXT: [bit 7] frame format (0 = 11 bit, 1= 29 bit, (see bit field ext)

bAccept

[out]

Shows in receive messages which filter accepted the message (see bit field afc)

The information are accessed bit by bit via the following bit fields:

type

[out]

Message type, for transmit messages exclusively the message type CAN_ MSGTYPE DATA is

valid.

CAN MSGTYPE DATA

Standard data message

Fields in receive messages (CANMSG2): dwMsgld contains the
ID of the message, dwTime the receiving time in ticks, abData
contains depending on the length (see bits.dIc) the data bytes
of the message.

Fields in transmit messages (CANMSGZ2): dwMsgld contains
the message ID, abData the data bytes to be transmitted,
dwTime is 0 or in delayed messages the desired delay time in
ticks to the message transmitted before. See Transmitting
Messages Delayed, p. 19.

CAN MSGTYPE INFO:

Information message

Generated by certain events resp. state changes of the
control unit and registered in the receiving buffers of all
active message channels. Field dwMsgld of the message
(CANMSGZ2) contains the value CAN_MSGID INFO. Field
abData[0] contains one of the following values:
CAN_INFO_ START: controller is started, field dwTime
contains the starting point.

CAN_INFO_STOP controller is stopped, field dwTime
contains value 0.

CAN_INFO_RESET controller is reset, field dwTime contains
value 0.

CAN MSGTYPE ERROR:

Error frame

Generated if a bus error occurs and registered in the
receiving buffers off all active message channels, provided
that the flag CAN_ OPMODE ERRFRAME is set during the
initialization of the CAN controller. Field dwMsgld of the
message (CANMSGZ2) contains the value CAN MSGID
ERROR, field dwTime the time of the event and field abData
[0] contains one of the following values: CAN_ERROR
STUFF (stuff error), CAN_ERROR_FORM (format error),
CAN_ERROR_ACK (acknowledgement error), CAN_ ERROR
BIT (bit error), CAN_ERROR_FDB (fast data bit error), CAN
ERROR_CRC (CRC error), CAN_ERROR_OTHER
(unspecified), CAN_ERROR_DLC (data length error).

CAN MSGTYPE STATUS

Status frame

Generated by state changes of the CAN controller and
registered in the receiving buffers of all active message
channels. Field dwMsgId (CANMSGZ2) contains the value
CAN MSGID STATUS, field dwTime the time of the event
and field abData[0] contains the low byte of the current CAN
state. The content of the other data fields is undefined.

CAN_ MSGTYPE WAKEUP

Not used

CAN_MSGTYPE_TIMEOVR

Timer overrun

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

107 (114)

Generated by the time stamp counter with every overflow
and registered in the receiving buffer of all active message
channels. Field dwTime of the message contains the time of
the event and field dwMsgld the number of occurred
overflows (normally 1). The content of the data fields abData
is undefined.

CAN_MSGTYPE TIMERST | Not used

ssm [out] Single shot message. If this bit is set in transmitting messages the controller tries to transmit
the message only once. If the message loses its arbitration during the first transmitting
attempt, the controller rejects the message and no further automatic transmitting attempt
follows. If this bit is 0 no transmitting is attempted until the message has been transmitted
over the bus. For receive messages this bit has no significance.

hpm [out] High priority message. Transmitmessages with high priority are assigned to a transmitting
buffer by the controller, the transmitting buffer is prior to messages in the normal
transmitting buffer. Messages of high priority are transmitted with priority to the bus. For
receive messages this bit has no significance.

ed! [out] Message with extended data length. For more information see description of data length
field Bits.dlc. The bit is exclusively valid with extended controller operating mode CAN
EXMODE _EXTDATA.

fdr [out] This bit can be set in transmit messages to transfer the data bytes and bits from the DLC
field with high bit rate on the bus. If this bit is set the RTR bit is ignored. See description of
bits.rtr. The bit is exclusively valid with extended controller operating mode CAN_EXMODE
FASTDATA.

esi [out] Error state indicator. Nodes that are error active transmit this bit dominant (0), nodes that
are error passive recessive (1). This bit is exclusively considered in receive messages. In
transmit messages it is has no significance and must be set to 0.

res [out] Reserved for further extensions. Due to compatibility reasons set field always to 0.

dic [out] Data length code. The value defines the number of valid data bytes in field abData of a
message. The following assignment applies:
dic Number of data bytes
0..8 0..8
9 12
10 16
11 20
12 24
13 32
14 48
15 64
A value higher than 8 is exclusively allowed in messages with extended data field (see
CANMSGZ2). To transmit a message with more than 8 byte the CAN must be used in the
operating mode CAN_EXMODE_EXTDATA and additionally the bit ed/ of the message to be
transmitted must be set to 1.

ovr [out] Data overrun. The bit is set to 1 in receive messages if an overflow of the receiving FIFO took
place.

srr [out] Self reception request. If the bit is set in transmit messages the message is assigned to the
receiving FIFO as soon as it is transmitted to the bus. In receive messages a set bit indicates
that it is a self reception message. This bit must not be mistaken as substitute remote
request (SRR) bit of CAN FD.

rtr [out] Remote transmission request. This bit is set in transmit messages to scan other bus
participants specifically for certain messages. Observe that the bit is ignored if one of the
bits ed/ orfdr is also set. RTR messages are not possible with CAN FD.

ext [out] Extended frame format (O=standard, 1=extended)

afc [out] Acceptance filter code, shows in receive messages which filter accepted the message. The

following values are defined:

CAN_ACCEPT REJECT Message not accepted

CAN ACCEPT ALWAYS Message always accepted

CAN_ACCEPT_FILTER 1 |Message accepted by the acceptance filter. The filter must be
used in operating mode CAN_FILTER INCL.

CAN_ACCEPT FILTER 2 |Message accepted by the filter list. Exclusively messages of
type CAN_MSGTYPE_DATA contain this value.

CAN_ACCEPT_PASSEXCL | Used in the filter operating mode CAN_FILTER EXCLifa
message of type CAN_MSGTYPE_DATA has been accepted.

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Data Types

108 (114)

6.2.9 CANMSG2

The structure describes the extended CAN message structure.

typedef struct CANMSG2

{

UINT32 dwTime;
UINT32 rsvd ;
UINT32 dwMsgId;

CANMSGINFO uMsgInfo;
UINT8 abDatal[64];

} CANMSG2, *PCANMSGZ2;

Member Dir. Description

dwTime [out] In receiving messages this field contains the starting point of the message in
ticks. For more information see Reception Time of a Message, p. 18. In delayed
transmitting messages this fields determines with how many ticks delay the
message is transmitted after the message sent before.

rsvd [out] Reserved (set to 0)

dwMsgld [out] CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsginfo [out] Bit field with information about the message type. For detailed description of bit
field see CANMSGINFO.

abData [out] Array for up to 64 data bytes. Number of valid data bytes is defined by field
uMsglInfo.Bits.dlc.

Note that, when using interfaces with FPGA, error frames get the same time stamp (field
dwTime) as the last received CAN message.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 109 (114)

6.2.10 CANCYCLICTXMSG2
The structure describes the extended cyclic transmit message.

typedef struct CANCYCLICTXMSG2
{
UINT16 wCycleTime;
UINT8 bIncrMode;
UINT8 bBytelndex;
UINT32 dwMsgId;
CANMSGINFO uMsgInfo;
UINT8 abData[64];
} CANCYCLICTXMSGZ2, *PCANCYCLICTXMSGZ2;

Member Dir. Description

wCycleTime [out] Cycle time of the message in number ticks. The cycle time can be calculated in
the fields dwClockFreq and dwCmsDivisor of structure CANCAPABILITIESZ2
with the following formula.

T cycle [s] = (dwCmsDivisor / dwClockFreq) * wCycleTime

The maximum value for the field is limited to the value in field dwCmsMaxTicks
of structure CANCAPABILITIESZ2.

bincrMode [out] Determines if a part of the cyclic transmitting list is automatically incremented
after each transmitting.

CAN_CTXMSG_INC_NO: no increment

CAN_CTXMSG_INC_ID:Increments CAN identifier (field dwMsgld). If the field
reaches the value 2048 (11 bit ID) resp. 536.870.912 (29 bit ID) an overflow
automatically takes place.

CAN_ CTXMSG_INC_8:Increment 8 bit data field. The data byte to be
incremented is determined via the parameter bBytelndex. If the maximum value
255 is exceeded an overflow to 0 takes place.
CAN_CTXMSG_INC_16:Increment 16 bit data field. The low byte of the 16 bit
value to be incremented is determined via the field bBytelndex. The high byte is
in the data field on position bBytelndex+1. If the maximum value 655350 is
exceeded an overflow to O takes place.

bBytelndex [out] Determines the byte resp. the low byte (LSB) of the 16 bit value in data field
abData, that is automatically incremented after each transmission. The value
range of the field is limited by the data length specified in the field uMsglInfo.Bits.
dlc of structure CANMSGINFO and it is limited to the range 0 to (dlc-1) in case
of 8 bit increment and 0 to (dlc—2) in case of 16 bit increment.

dwMsgld [out] CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsginfo [out] Bit field with information about the message type. For description of bit field see
CANMSGINFO.

abData [out] Array for up to 64 data bytes. Number of valid data bytes is defined by field

uMsglnfo.Bits.dlc.

6.3 LIN-Specific Data Types
6.3.1 LININITLINE

The structure contains the controller initialization parameters.

typedef struct LININITLINE
{
UINT8 bOpMode;
UINT8 DbReserved;
UINT16 wBitrate;
} LININITLINE, *PLININITLINE;

VCI: C-API for CAN-FD Software Design Guide 4.02.0250.20023 1.3 en-US

Data Types 110 (114)
Member Dir. Description
bOpMode [in] Operating mode of LIN controller. One or more of the following constants can be
specified:
LIN OPMODE_SLAVE: Slave mode (default)
LIN OPMODE MASTER: Master mode (if supported see LINCAPABILITIES).
LIN OPMODE ERRORS: Reception of error frames enabled
bReserved [in] Reserved. Value must be initialized with 0.
wBitrate [in] Transmitting rate in bits per second. The specified value must be in between the
limits that are determined by the constants LIN BITRATE MIN and LIN
BITRATE MAX. If the controller is used as slave and supports an automatic bit
detection the bit rate can be determined automatically by setting the value
LIN BITRATE AUTO.
6.3.2 LINCAPABILITIES

The structure describes the LIN controller capabilities.

typedef struct LINCAPABILITIES

{

UINT32 dwFeatures;
UINT32 dwClockFreqg;
UINT32 dwTscDivisor;

} LINCAPABILITIES,

*PLINCAPABILITIES;

Member

Dir.

Description

dwFeatures

[out]

Supported features. Value is a logical combination of one or more of the
following constants:

LIN_FEATURE_MASTER: LIN controller supports Master mode.

LIN_ FEATURE_AUTORATE: LIN controller supports automatic bit rate
detection.

LIN_FEATURE_ERRFRAME: LIN controller supports reception of error frames.
LIN FEATURE BUSLOAD: LIN controller supports bus load calculation.

LIN FEATURE_SLEEP: LIN controller supports sleep message (master only).
LIN_ FEATURE_WAKEUP: LIN controller supports wakeup message.

dwClockFreq

[out]

Frequency in hertz of the primary timer

dwTscDivisor

[out]

Divisor for the time stamp counter. The time stamp counter returns the
timestamp for LIN messages. Frequency of time stamp counter is calculated by
the frequency of the primary timer divided by the value specified here.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types 111 (114)
6.3.3 LINLINESTATUS
The structure describes the controller status information.
typedef struct LINLINESTATUS
{
UINT8 bOpMode;
UINT8 DbBusLoad;
UINT1l6 wBitrate;
UINT32 dwStatus;
} LINLINESTATUS, *PLINLINESTATUS;
Member Dir. Description
bOpMode [out] Current operating mode of controller (see LIN_OPMODE_ inLININITLINE)
bBusLoad [out] Bus load in the second before the call of the function in percentage (0 to 100).
Value shows a state. To monitor the bus load over a time span use appropriate
analysis tools. Value is exclusively valid if calculation of bus load is supported by
the controller (see LINCAPABILITIES).
wBitrate [out] Currently specified transmission rate in bits per second
dwStatus [out] Current status of LIN controller. Value is a logical combination of one or more of
the following constants:
LIN STATUS_ TXPEND: controller is currently transmitting a message to the
bus.
LIN_ STATUS_ OVRRUN: data overflow occurred in the receiving buffer of the
controller:
LIN_STATUS_ININIT: controlleris in stopped state.
LIN_STATUS_ ERRLIM: overflow of an error counter of the controller
occurred.
LIN_STATUS_ BUSOFF: controller has shifted to state BUS-OFF.
6.3.4 LINMONITORSTATUS

The structure describes the message monitor status information.

typedef struct LINMONITORSTATUS

{

LINLINESTATUS sLineStatus;

BOOL32 fActivated;
BOOL32 fRxOverrun;
UINT8 bRxFifoLoad;

} LINMONITORSTATUS, *PLINMONITORSTATUS;
Member Dir. Description
sLineStatus [out] Current status of LIN controller. For more information see description of data
structure LINLINESTATUS.
fActivated [out] Shows if message monitor is active (TRUE) or inactive (FALSE).
fRxOverrun [out] Signalizes an overflow in the receiving buffer with the value TRUE.
bRxFifoLoad [out] Current filling level of receiving FIFO in percentage

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

Data Types

112 (114)

6.3.5 LINMSG

The structure describes the LIN message structure.

typedef struct LINMSG

{
UINT32 dwTime;

LINMSGINFO uMsgInfo;

UINT8 abDatal[8];
} LINMSG, *PLINMSG;

Member Dir.

Description

dwTime [out]

In receiving messages this field contains the relative receiving point of the
message in timer ticks. The resolution of timer tick can be calculated with the
fields dwClockFreq and dwTscDivisor of structure LINCAPABILITIES with the
following formula: Resolution [s] = dwTscDivisor / dwClockFreq

uMsginfo [out]

Bit field with information about the message. For detailed description of bit field
see LINMSGINFO.

abData [out]

Array for up to 8 data bytes. Number of valid data bytes is determined by the
field uMsglInfo.Bits.dlen.

VCI: C-API for CAN-FD Software Design Guide

4.02.0250.20023 1.3 en-US

This page intentionally left blank

© 2021 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se 4.02.0250.20023 1.3 en-US/2021-11-12 / 23712

	1 User Guide
	1.1 Related Documents
	1.2 Document History
	1.3 Conventions
	1.4 Glossary

	2 System Overview
	2.1 Subcomponents and Functions of the Programming Interface
	2.2 Programming Examples

	3 Device Management and Device Access
	3.1 Listing Available Devices
	3.2 Searching Individual Devices
	3.3 Accessing Devices

	4 Accessing the Bus
	4.1 Accessing the CAN Bus
	4.1.1 Message Channels
	4.1.2 Control Unit
	4.1.3 Message Filter
	4.1.4 Cyclic Transmitting List

	4.2 Accessing the LIN Bus
	4.2.1 Message Monitors
	4.2.2 Control Unit

	5 Functions
	5.1 General Functions
	5.1.1 vciInitialize
	5.1.2 vciGetVersion
	5.1.3 vciFormatErrorA
	5.1.4 vciFormatErrorW
	5.1.5 vciDisplayErrorA
	5.1.6 vciDisplayErrorW
	5.1.7 vciCreateLuid
	5.1.8 vciLuidToCharA
	5.1.9 vciLuidToCharW
	5.1.10 vciCharToLuidA
	5.1.11 vciCharToLuidW
	5.1.12 vciGuidToCharA
	5.1.13 vciGuidToCharW
	5.1.14 vciCharToGuidA
	5.1.15 vciCharToGuidW

	5.2 Functions for the Device Management
	5.2.1 Functions for Accessing the Device List
	5.2.2 Functions for Accessing VCI Devices

	5.3 Functions for CAN Access
	5.3.1 Control Unit
	5.3.2 Message Channel
	5.3.3 Cyclic Transmit List

	5.4 Functions for LIN Access
	5.4.1 Control Unit
	5.4.2 Message Monitor

	6 Data Types
	6.1 VCI-Specific Data Types
	6.1.1 VCIID
	6.1.2 VCIVERSIONINFO
	6.1.3 VCILICINFO
	6.1.4 VCIDRIVERINFO
	6.1.5 VCIDEVICEINFO
	6.1.6 VCIDEVICECAPS
	6.1.7 VCIDEVRTINFO

	6.2 CAN-Specific Data Types
	6.2.1 CANBTP
	6.2.2 CANCAPABILITIES2
	6.2.3 CANINITLINE2
	6.2.4 CANLINESTATUS2
	6.2.5 CANCHANSTATUS2
	6.2.6 CANRTINFO
	6.2.7 CANSCHEDULERSTATUS2
	6.2.8 CANMSGINFO
	6.2.9 CANMSG2
	6.2.10 CANCYCLICTXMSG2

	6.3 LIN-Specific Data Types
	6.3.1 LININITLINE
	6.3.2 LINCAPABILITIES
	6.3.3 LINLINESTATUS
	6.3.4 LINMONITORSTATUS
	6.3.5 LINMSG

