
VCI: C++
Software Version 4

SOFTWARE DESIGN GUIDE
4.02.0250.20022 1.6 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any
errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development.
The information in this document shall therefore not be construed as a commitment on the part of HMS Networks
and is subject to change without notice. HMS Networks makes no commitment to update or keep current the
information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data,
examples or illustrations included in this document nor for any damages incurred during installation of the product.
Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product
is used correctly in their specific application and that the application meets all performance and safety requirements
including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances
assume liability or responsibility for any problems that may arise as a result from the use of undocumented features
or functional side effects found outside the documented scope of the product. The effects caused by any direct or
indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability
issues.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

1 User Guide ... 5
1.1 Document History ..5

1.2 Trademark Information ...5

1.3 Conventions..5

1.4 Glossary ...6

2 System Overview... 7
2.1 Features and Components ...7

2.2 Programming Examples...8

2.3 Using the VCI Headers...8

3 Device Management and Device Access.. 9
3.1 Listing Available Devices.. 10

3.2 Accessing Individual Devices .. 11

4 Communication Components ... 12
4.1 First In/First Out Memory (FIFO) ... 13

4.1.1 Functionality of the Receiving FIFO ... 16

4.1.2 Functionality of the Transmitting FIFO 18

5 Accessing the Bus Controller .. 20
5.1 BAL.. 20

5.2 CAN Controller .. 22
5.2.1 Socket Interface... .. 22

5.2.2 Message Channels .. 23

5.2.3 Control Unit . 33

5.2.4 Message Filter... 42

5.2.5 Cyclic Transmitting List. . .. 46

5.3 LIN-Controller.. 49
5.3.1 Socket Interface... .. 49

5.3.2 Message Monitors 50

5.3.3 Control Unit . 53

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

6 Error Messages .. 56

7 Interface Description... 57
7.1 Exported Functions... 57

7.1.1 VciInitialize... 57

7.1.2 VciFormatError .. 57

7.1.3 VciGetVersion ... 58

7.1.4 VciCreateLuid.. .. 58

7.1.5 VciLuidToChar ... 59

7.1.6 VciCharToLuid ... 59

7.1.7 VciGuidToChar .. 60

7.1.8 VciCharToGuid ... 60

7.1.9 VciGetDeviceManager 61

7.1.10 VciQueryDeviceByHwid ... 61

7.1.11 VciQueryDeviceByClass ... 62

7.1.12 VciCreateFifo 62

7.1.13 VciAccessFifo 63

7.2 Interface IUnknown.. 64
7.2.1 QueryInterface ... 64

7.2.2 AddRef.. . .. 64

7.2.3 Release 65

7.3 Interfaces of the Device Management ... 66
7.3.1 IVciDeviceManager 66

7.3.2 IVciEnumDevice 67

7.3.3 IVciDevice 69

7.4 Interfaces of the Communication Components.. 71
7.4.1 Interfaces for FIFOs.... 71

7.5 BAL Specific Interfaces .. 84
7.5.1 IBalObject 84

7.6 CAN Specific Interfaces ... 86
7.6.1 ICanSocket ... 86

7.6.2 ICanSocket2... 88

7.6.3 ICanControl .. 90

7.6.4 ICanControl2.. . .. 95

7.6.5 ICanChannel .. 101

7.6.6 ICanChannel2.. .. 104

7.6.7 ICanScheduler ... 111

7.6.8 ICanScheduler2.. 115

7.7 LIN Specific Interface .. 119
7.7.1 ILinSocket 119

7.7.2 ILinControl . .. 121

7.7.3 ILinMonitor .. 124

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

8 Data Structures.. 127
8.1 VCI Specific Data Types ... 127

8.1.1 VCIID ... 127

8.1.2 VCIVERSIONINFO.... 127

8.1.3 VCIDEVICEINFO... . .. 128

8.1.4 VCIDEVICECAPS 129

8.2 BAL Specific Data Types... 129
8.2.1 BALFEATURES ... 129

8.2.2 BALSOCKETINFO 130

8.3 CAN Specific Data Types .. 130
8.3.1 CANCAPABILITIES ... 130

8.3.2 CANCAPABILITIES2... .. 132

8.3.3 CANBTRTABLE ... 134

8.3.4 CANBTP.... 135

8.3.5 CANBTPTABLE ... 136

8.3.6 CANINITLINE 137

8.3.7 CANINITLINE2 ... 138

8.3.8 CANLINESTATUS 138

8.3.9 CANLINESTATUS2 140

8.3.10 CANCHANSTATUS... . .. 141

8.3.11 CANCHANSTATUS2 141

8.3.12 CANSCHEDULERSTATUS 142

8.3.13 CANSCHEDULERSTATUS2 142

8.3.14 CANMSGINFO ... 143

8.3.15 CANMSG 145

8.3.16 CANMSG2.... 146

8.3.17 CANCYCLICTXMSG 147

8.3.18 CANCYCLICTXMSG2.... 148

8.4 LIN Specific Data Types ... 149
8.4.1 LINCAPABILITIES 149

8.4.2 LININITLINE ... 149

8.4.3 LINLINESTATUS... . .. 149

8.4.4 LINMONITORSTATUS 150

8.4.5 LINMSGINFO... .. 151

8.4.6 LINMSG.... 153

This page intentionally left blank

User Guide 5 (154)

1 User Guide
Please read the manual carefully. Make sure you fully understand the manual before using the
product.

1.1 Document History
Version Date Description

1.0 June 2016 First version
1.1 January 2017 Minor corrections

1.2 January 2018 Added path to examples, adjusted system overview

1.3 September 2018 Minor corrections, added instructions for including defines

1.4 May 2019 Layout changes

1.5 November 2019 Simplified SSP positioning supported (CANBTP)

1.6 October 2021 Minor corrections

1.2 Trademark Information
Ixxat® is a registered trademark of HMS Industrial Networks. All other trademarks mentioned in
this document are the property of their respective holders.

1.3 Conventions
Instructions and results are structured as follows:

► instruction 1

► instruction 2

→ result 1

→ result 2

Lists are structured as follows:

• item 1

• item 2

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

This font is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Conventions, p. 5

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

http://www.hms-networks.com

User Guide 6 (154)

1.4 Glossary

Abbreviations

BAL Bus Access Layer

CAN Controller Area Network

FIFO First In/First Out Memory

GUID Globally unique ID

LIN Local Interconnect Network

VCI Virtual Communication Interface

VCIID VCI specific unique ID

VCI server VCI system service

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

System Overview 7 (154)

2 System Overview
The VCI (Virtual Communication Interface) is a system extension, that provides common access
to different devices by HMS Industrial Networks for applications. In this guide the C++ user mode
programming interface VCIAPI.DLL is described.

Fig. 1 System structure and components

2.1 Features and Components
The programming interfaces connect the VCI server and the application programs using
predefined components, interfaces and functions.

The user mode programming interface (VCIAPI.DLL) is the basis for all superior programming
interfaces and applications. The provided components implement the interface IUnknown, that
is defined by MS-COM. The server functionality that is also specified in MS-COM is not
implemented, resp. not supported. The components do not have a COM conform fabric or
automation interface, i. e. VCI specific components are not created with IClassFactory and
do not have an IDispatch interface compatible to automation. They can not be used by script
or .NET languages.

Regarding multi threading, simultaneous access to particular components from several threads is
possible. Every thread has to open an own instance of the desired component resp. interface.
The individual functions of an interface must not be called by different threads, because the
implementation is not thread safe due to performance reasons. Interfaces, that have an own
locking mechanism are an exception to this rule. This locking mechanism is for example provided
by the interfaces IFifoReader andIFifoWriter with the functions Lock() and Unlock
().

The components do not have to be assigned to an apartment, as usual in COM. If the VCIAPI is
used exclusively, without any other COM components the particular threads of an application do
not have to be assigned to an apartment nor create an apartment and therefore do not have to
call the function CoInitialize().

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

System Overview 8 (154)

2.2 Programming Examples
With installing the VCI driver, programming examples are automatically installed in c:\Users
\Public\Documents\HMS\Ixxat VCI 4.0\Samples\SDK.

If developing own projects, make sure to integrate the file \common\uuids.c into the
project to correctly initialize the GUIDs (see Using the VCI Headers, p. 8).

2.3 Using the VCI Headers
The headers of the GUIDs that are used in a project must be included to define the VCI specific
GUIDs and the define INITGUID must be set. If the definitions are not included, the error
LNK2001 is returned when compiling the project.

► In own projects include the c-file uuids.c (from the demo).

→ GUIDs of the VCI V4 SDK are initialized.

→ Class IDs are defined.

► Make sure, that the GUIDs are initialized only once.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Device Management and Device Access 9 (154)

3 Device Management and Device Access
The device management provides listing of and access to devices logged into the VCI server.

Fig. 2 Device management components

The VCI server manages all devices in a system-wide global device list. When the computer is
booted or a connection between device and computer is established the device is automatically
logged into the server.
If a device is no longer available for example because the connection is interrupted, the device is
automatically removed from the device list.

The logged in devices are accessed via the VCI device manager or its interface
IVciDeviceManager. A pointer to this interface is provided by the exported function
VciGetDeviceManager.

Main Device Information
Interface Type Description

VciObjectId Unique ID of device When a device logs in, it is allocated a system-wide
unique ID (VCIID). This ID is required for later access to
the device.

DeviceClass Device class All device drivers identify their supported device class
by a worldwide unique ID (GUID). Different devices
belong to different device classes, for example the
USB-to-CAN belongs to a different device class as PC-
I04/PCI.

UniqueHardwareId Hardware ID Each device has a unique hardware ID. The ID can be
used to differentiate between two interfaces or to
search for a device with a certain hardware ID.
Remains after restart of the system. Because of that it
can be stored in the configuration file and enables
automatic configuration of the application after
program and system start.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Device Management and Device Access 10 (154)

3.1 Listing Available Devices
► To access the global device list, call function IVciDeviceManager::EnumDevices.

→ Returns pointer to interface IVciEnumDevice of the device list.

Information about available devices can be accessed and changes in the device list can be
monitored. There are different possibilities to navigate in the device list.

Requesting Information About Devices in Device List

The application must provide the required memory as a structure of type VCIDEVICEINFO.

► Call function IVciEnumDevice::Next.

→ Returns description of a device in the device list.

→ With each call the internal index is incremented.

► To get information about the next device in the device list, call function
IVciEnumDevice::Next again.

Reset the Internal List Index

► Call function IVciEnumDevice::Reset.

→ Subsequent call of function vciEnumDevice::Next provides information about
the first device in the device list again.

Skipping a Defined Number of Elements in Device List

► Call function IVciEnumDevice::Skip.

► Use of function only makes sense in systems with unchangeable device list, because only
here the sequence of the devices is known and fix.

Hot plug-in devices like USB devices are logged in with connecting and logged out with
disconnecting. The devices are also logged in or off when the operating system activates or
deactivates a device driver in the device manager.

Monitoring Changes in the Device List

► Call function IVciEnumDevice::AssignEvent.

→ An event object is created and assigned to the device list.

→ If a device or a driver logs in or off the VCI server the event object is automatically
signalized.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Device Management and Device Access 11 (154)

3.2 Accessing Individual Devices
Access individual devices with function IVciDeviceManager::OpenDevice.

► Specify the device ID (VCIID) of the device to be opened in parameter (to determine the
device ID see Listing Available Devices, p. 10).

→ Returns pointer to interface IVciDevice of device list.

Requesting Information About an Open Device

► Call function IVciDevice::GetDeviceInfo.

→ Required memory is provided by the application as structure of the type
VCIDEVICEINFO.

→ Returns information about the device in device list (see Main Device Information, p. 9).

Requesting Information About Technical Features of a Device

► Call function IVciDevice::GetDeviceCaps.

Parameter is pointer to structure of type VCIDEVICECAPS .

→ Function saves information about the technical features of the device in the specified
area.

→ Returned information informs how many bus controllers are available on a device.

→ Structure VCIDEVICECAPS contains a table with up to 32 entries, that address the
respective bus connection resp. controller. Entry 0 describes the bus connection 1,
entry 1 bus connection 2 etc.

Fig. 3 Interface with two bus controllers

Opening Individual Layer Components

► With function IVciDevice::OpenComponent open individual layer components,
which are used by different applications from different areas of applications to access the
device (for more information see Accessing the Bus Controller, p. 20).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 12 (154)

4 Communication Components
The applications communicate with the drivers resp. with the firmware running on the device
with special communication components. The VCI provides diverse components for different
requirements. For bus specific applications the First In/First Out memory (FIFO) is important.

Each memory used by the communication components comes from the non-paged memory, a
part of the main memory which is not released from the operating system. This memory pool
which is also used by other device drivers and by the operating system has a limited size,
dependent on the version of the operating system and the available physical memory.

The 32 bit Windows variant reserves for the non-paged pool approx. 1/4 of the available main
memory, maximum 256 MB (also in systems with more than 1 GB main memory). If the 3GB boot
option is active, maximum 128 are available. The 64 bit Windows variant reserves for the non-
paged pool approx. 400 KB per MB available main memory, maximum 128 GB.

Size of Memory Reserved for the Non-Paged Pool of Different Windows Versions

32-bit systems 64-bit systems

Windows XP,
Server 2003

Up to 1.2 GB RAM: 32-256 MB,
more than 1.2 GB: 256 MB

Approx. 400 KB per MB RAM,
max. 128 GB

Windows Vista,
Server 2008,
Windows 7,
Server 2008R2

Dynamically assigned, up to approx.
75 % of RAM,
max. 2 GB

Dynamically assigned, up to approx.
75 % of RAM,
max. 128 GB

To specify the size of the memory pool via the registry the value of NonPagedPoolSize has to be
adjusted. This value is in:

HKEY_LOCAL_MACHINE
\SYSTEM

\CurrentControlSet
\Control

\Session Manager
\Memory Management\

Take care of an amount and/or a size of the FIFOs as small as possible because of the limited size of the
pool in 32 bit systems.

The memory actually occupied by the FIFO is dependent on the requested dimensions, but
always contains at least one physical memory site, that contains 4 KB in 32 bit systems and 8 KB
in 64 bit systems. Individual FIFOs can be bigger than requested. For example the calculated
required memory of a FIFO with 32 elements with each 16 byte per unit is 512 byte. For the user
invisible control fields are added, which in this case need additionally 24 bytes.

If such a FIFO is created in a 32 bit system, the system reserves a memory site with 4 KB. The
FIFO only needs 512+24 bytes and the unused range is not used for other components due to
security reasons. 3560 bytes are wasted. In FIFOs this unused range is used to increase the
number of elements available to the maximum number of elements allowed for the allocated
range. If a FIFO with the above stated dimensions is for example created on a 32 bit system, the
FIFO has 222 additional elements, in all 254 instead of the requested 32 elements.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 13 (154)

4.1 First In/First Out Memory (FIFO)
The VCI contains an implementation for First In/First Out memory objects.

FIFO Features:

• Dual-port memory, in which data is written on the input side and read on the output side.

• Chronological sequence is preserved, i. e. data that is written in the FIFO at first is also read
at first.

• Similar to the functionality of a pipe connection and therefore also named pipe.

• Used to transfer data from a transmitter to the parallel receiver. Agreement with a lock
mechanism, that has access to the common memory area at a certain point of time is not
necessary.

• No locking, possible to be overcrowded, if receiver does not manage to read the data in
time.

• The transmitter writes the messages to transmit with interface IFifoWriter in the FIFO.
The receiver parallel reads the data with interface IFifoReader.

Fig. 4 FIFO data flow

Access:

• Writing and reading access to a FIFO is possible simultaneously, a receiver is able to read
data while a transmitter writes new data to the FIFO.

• Simultaneous access of several transmitters resp. receivers to the FIFO is not possible.

• Multiple access to interfaces IFifoReader and IFifoWriter is prevented, because
the respective interface of the FIFO can only be opened once, i. e. not until the interface is
released can it be opened again.

• To prevent simultaneous access to one interface by different threads of an application:

► Make sure that the functions of an interface can only be called by one thread of the
application.

or

► Synchronize the access to an interface with a respective thread: Call function Lock
before every access to the FIFO and after accessing call function Unlock of the
respective interface.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 14 (154)

Fig. 5 FIFO locking mechanism

Receiver 1 calls function Lock and gains access to the FIFO. The following call of Lock by
receiver 2 is blocked until receiver 1 releases the FIFO with calling function Unlock. Now
receiver 2 can start processing. In the same way two transmitters that access the FIFO with the
interface IFifoWriter can be synchronized.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 15 (154)

The FIFOs provided by the VCI also allow the exchange of data between two processes, i. e. over
the boundaries of the process.

Fig. 6 FIFO for data exchange between two processes

FIFOs are also used to exchange data between components running in the kernel mode and
programs running in the user mode.

Fig. 7 Possible combination of a FIFO for data exchange between user and kernel mode

Applications can establish data channels with the functions VciCreateFifo resp.
VciAccessFifo and are not dependent on operating system specific mechanisms, like Pipes
are.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 16 (154)

4.1.1 Functionality of the Receiving FIFO

Fig. 8 Functionality of the receiving FIFO

At the receiving side FIFOs are addressed via the interface IFifoReader.

Access files to read:

► Call function GetDataEntry.

→ Next valid data element in the FIFO is read and released.

or

► Call function AcquireRead.

→ Pointer to next valid element and number of valid elements that can be read
sequentially from this position onward is determined.

► To release one or more read and processed elements, call function ReleaseRead.

Because FIFOs reserve a sequential memory area it is possible AcquireRead returns less valid
entries than are actually available.

► Repeat calling the functions AcquireRead and ReleaseRead in a loop until no more
valid elements are available.

The address returned when calling AcquireRead points directly to the memory used by the
FIFO.

► Make sure that no element outside the valid area is called during access.

Fig. 9 Functionality of AcquireRead

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 17 (154)

Event Object

It is possible to assign an event object to the FIFO to prevent that the receiver has to ask wether
new data is available for reading. The event object is set to a signaled status if a certain
threshold is reached or exceeded.

► Create CreateEvent with Windows API function.

→ Returned handle is assigned to the FIFO with function AssignEvent.

► Set the threshold resp. filling level that triggers the event with function SetThreshold.

Afterwards the application is able to wait for the event and to read the received data with one of
the Windows API functions WaitForSingleObject, WaitForMultipleObjects or one
of the functions MsgWaitFor….

Fig. 10 Receiving sequence event-driven reading of data from the FIFO

Since the event is exclusively triggered with the exceedance of the set threshold, make sure that all
entries of the FIFO are read in case of event-driven reading. If the threshold is set for example 1 and
already 10 elements are in the FIFO when the event happens and only one is read, a following event will
not be triggered until the next write-access. If no further write-access follows by the transmitter 9
unread elements are in the FIFO that are not shown as event anymore.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 18 (154)

4.1.2 Functionality of the Transmitting FIFO

Fig. 11 Functionality of the transmitting FIFO

At the transmitting side FIFOs are addressed via the interface IFifoWriter.

Write data to be transmitted in the FIFO:

► To write an individual data element to the FIFO, call function PutDataEntry.

→ Data element is marked valid and can be read by the receiver.

or

► Call function AcquireWrite.

→ Pointer to next free element and number of free elements that can be addressed
sequentially from this position onward is determined.

► Declare one or more addressed elements in the FIFO valid with function ReleaseWrite.

→ New elements are visible for the receiver and can be read.

Because FIFOs reserve a sequential memory area it is possible that AcquireWrite returns less
free entries than are actually available.

► Repeat calling the functions AcquireWrite and ReleaseWrite in a loop until no more
free elements are available.

The address returned when calling AcquireWrite points directly to the memory used by the
FIFO.

► Make sure that no element outside the valid area is addressed during access.

Fig. 12 Functionality of AcquireWrite

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Communication Components 19 (154)

Event Object

It is possible to assign an event object to the FIFO to prevent that the transmitter must check if
free elements are available. The event object is set to a signaled status if the number of free
elements has reached or exceeded a certain value.

► Create CreateEvent with the Windows API function.

→ Returned handle is assigned to the FIFO with function AssignEvent.

► Set the threshold resp. number of free elements that triggers the event with function
SetThreshold.

Afterwards the application is able to wait for the event and to write the new data in the FIFO
with one of the Windows API functions WaitForSingleObject,
WaitForMultipleObjects or one of the functions MsgWaitFor….

Fig. 13 Transmitting sequence event-driven writing of data to FIFO

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 20 (154)

5 Accessing the Bus Controller
Opening Individual Layer Components

With function IVciDevice::OpenComponent open individual layer components, which are
used by different applications from different areas of applications to access the device.

► In first parameter specify which layer is opened (for more information see OpenComponent).

► In second parameter specify the interface to access.

The different layers are locked against each other and can not be opened simultaneously. If for
example an application opens another layer of the BAL, no component of the BAL can be opened
until all components of the other layer resp. the layer itself is closed.

5.1 BAL
The data buses that are connected via a bus adapter are accessed with the Bus Access Layer
(BAL).

• Provides components and interfaces for the access to available bus controller and direct
communication with the connected bus system.

• Interfaces abstract and encapsulate the communication with the controller hardware in
such a way that applications can mostly be implemented independently of the special
features of the different bus controllers.

• The BAL can be opened several times simultaneously (not secured against multiple opening).
Different applications can access different bus connections simultaneously.

Fig. 14 Components for accessing the bus

► Search the adapter in the device list and open with IVciDeviceManager::
OpenDevice.

► Open the BAL components with function IVciDevice::OpenComponent.

► In first parameter specify the value CLSID_VCIBAL.

► In second parameter specify the value IID_IBalObject, to specify the interface to
access (BAL only supports interface IBalObject).

► Call the function.

→ Returns pointer to interfaces IBalObject in third parameter.

→ If an error occurs, the function returns an error code unlike VCI_OK.

► After opening, release the references to the device manager resp. the device object that are
no longer needed with Release.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 21 (154)

For further work with the adapter only the BAL object resp. its interface IBalObject is
necessary. The interface IBalObject can be opened by several programs simultaneously.

The BAL object supports several types of controllers and bus connections.

Fig. 15 BAL with CAN and LIN controller

Determine Number and Type of Provided Connections

► Call function IBalObject::GetFeatures.

→ Returns information as structure of type BALFEATURES.

Accessing the Connection or Interface of Connection

Access connection with IBalObject::OpenSocket.

► In the first parameter specify the number of the connection to be opened. The value must
be in the range 0 to BusSocketCount-1. To open connection 1 enter value 0, for connection
2 value 1 etc.

► In the second parameter specify the ID of the interface to access the controller.

► Call the function.

→ Returns the address of the desired interface in the variable that points to the third
parameter.

→ Possibilities resp. interfaces of a connection are dependent on the supported bus.

Certain interfaces of a connection can only be accessed by one program, others can be accessed by any
number of programs simultaneously. The rules of accessing the particular interfaces are dependent on
the type of the connection and are described in detail in the following chapters.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 22 (154)

5.2 CAN Controller

Fig. 16 Components CAN controller and interface IDs

Access individual components resp. interfaces of CAN controller with function IBalObject::
OpenSocket. For a complete description of all interfaces and the IDs that are necessary for
opening see CAN Specific Interfaces, p. 86.

Supported interfaces of the components:

• ICanSocket, ICanSocket2 (CAN controller), see Socket Interface, p. 22.

• ICanControl, ICanControl2 (control unit), see Control Unit, p. 33

• ICanChannel, ICanChannel2 (message channel), see Message Channels, p. 23.

• ICanScheduler, ICanScheduler2 (cyclic transmitting list), see Cyclic Transmitting List,
p. 46, optional, exclusively with devices with their own microprocessor

The extended interfaces ICanSocket2, ICanControl2, ICanChannel2 and
ICanScheduler2 allow the access to the new functions of CAN FD controllers. With standard
controllers they can be used for further filter possibilities.

5.2.1 Socket Interface
The socket interface ICanSocket resp. ICanSocket2 is used to request features,
possibilities and operating status of the CAN controller. The interface is not subjected to any
access restrictions and can be opened by multiple applications simultaneously.

Open with function IBalObject::OpenSocket.

► In parameter riid specify the value IID_ICanSocket or IID_ICanSocket2 depending
on the functionality.

► Call the function.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 23 (154)

► To request the features of the connection, like the controller type in use, the type of bus
coupling and the supported features, call function GetCapabilities (for more
information about returned data see CANCAPABILITIES and CANCAPABILITIES2).

► To determine the current operating state of the controller, call function GetLineStatus
(for more information see CANLINESTATUS and CANLINESTATUS2).

► Create message channels with function CreateChannel.

5.2.2 Message Channels
Message channels consist of a receiving and an optional transmitting FIFO.

Message channels with extended functionality (CAN FD) contain an additional, optional input
filter.

Fig. 17 Components and interfaces of a message channel

The size of the data elements in the FIFO corresponds to the size of the structure CANMSG, or
with message channels with extended functionality the size of the structure CANMSG2. All
functions to access the data elements of the FIFO attend resp. return a pointer to structures of
type CANMSG resp. CANMSG2 (description see First In/First Out Memory (FIFO), p. 13).

All CAN connections support message channels of the type ICanChannel and
ICanChannel2. If the extended functionality of a message channel of type ICanChannel2 is
usable, is depending on the CAN controller of the connection. If the connection provides for
example only a standard CAN controller, the extended functionality can not be used. With a
message channel of type ICanChannel the extended functionality of a CAN FD can neither be
used.

The basic functionality of a message channel is the same, irrespective whether the connection is
used exclusively or not. If used exclusively, the message channel is directly connected to the CAN
controller.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 24 (154)

Fig. 18 Exclusive use of a message channel

In case of non-exclusive use the individual message channels are connected to the controller via
a distributor.

The distributor transfers all received messages to all active channels and parallel the transmitted
messages to the controller. No channel is prioritized i. e. the algorithm used by the distributor is
designed to treat all channels as equal as possible.

Fig. 19 CAN message distributor: possible configuration with three channels

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 25 (154)

Creating a Message Channel

Create message channel with function ICanSocket::CreateChannel resp. for channels
with extended functionality with ICanSocket2::CreateChannel.

► If controller is used exclusively (exclusively with the first message channel) enter in
parameter fExclusive the value TRUE.

or

If controller is used non-exclusively (further message channels can be opened and controller
can be used by other applications) enter in parameter fExclusive the value FALSE.

Initializing the Message Channel

A newly generated message channel contains neither a receiving nor a transmitting FIFO. Before
using an initialization is necessary.

The random access memory required for the FIFOs (see Communication Components, p. 12) limits the
possible number of channels.

Initialize with function ICanChannel::Initialize resp. with a controller with extended
functionality with ICanChannel2::Initialize.

► Specify the size of the receiving FIFO in parameter wRxFifoSize resp. dwRxFifoSize.

► Make sure, that the value in parameter wRxFifoSize is higher than 0.

► Specify the size of the transmitting FIFO in parameter wTxFifoSize resp. dwTxFifoSize.

The size determines the number of messages that the respective FIFO must record at the
minimum.

► If no sending FIFO is required, set value in wTxFifoSize resp. dwTxFifoSize to 0.

If using message channels with extended functionality an additional optional receive filter can be
created.

► With a 29 bit filter specify the size of the filter table in number of IDs in parameter
dwFilterSize.

With 11 bit filter the size of the filter table is set to 2048 and can not be changed.

► If no receiving filter is needed, set dwFilterSize to 0.

► Specify the functionality for 11 bit and 29 bit filter in parameter bFilterMode.

► Call the function.

Initially specified functionality can be changed later for both filters separately with the function
SetFilterMode in inactive message channels.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 26 (154)

Activating the Message Channel

A new message channel is inactive. Messages can only be transmitted and received if the
channel is active.

► To connect the channel to the controller and to activate the message transport, call
function Activate.

► To activate the message transport between channel and bus, start the controller with
control unit.

Which messages are received by the bus, is dependent on the settings of the message filter
in the controller (for more information about the control unit and message filters see
Control Unit, p. 33 and Message Filter, p. 42).

► Disconnect an active channel with the function Deactivate.

To change the filter settings of a message channel the message channel must be inactive, i.
e. disconnected from the controller.

Receiving CAN Messages

Note that, when using interfaces with FPGA, error frames get the same time stamp as the
last received CAN message.

The messages received on the bus and accepted by the filter are written to the receiving FIFO by
the distributor.

► To access the FIFO call function ICanChannel::GetReader resp. with a controller with
extended functionality ICanChannel2::GetReader.

→ Pointer to interface IFifoReader is returned.

→ Make sure that in all functions that return a pointer to FIFO elements the elements in
the receiving FIFO are always of the type CANMSG resp. with a controller with
extended functionality of the type CANMSG2.

Reading messages from the FIFO:

► Make sure that the parameter pvData points to a buffer of type CANMSG resp. CANMSG2.

► Call function IFifoReader::GetDataEntry.

or

► Call function IFifoReader::AcquireRead.

→ Returns pointer to next valid message in the FIFO and the number of messages that
can be read sequentially ascending from this position onward.

► After processing remove the data with function IFifoReader::ReleaseRead from
the FIFO.

The address returned by AcquireRead points directly to the memory of the FIFO. Make sure, that
exclusively elements of the valid range are addressed.

Possible Use of GetDataEntry

void ReceiveMessages(IFifoReader* pReader)
{

CANMSG sCanMsg;

while(pReader->GetDataEntry(&sCanMsg) == VCI_OK)
{

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 27 (154)

// Processing of message
}

}

Possible Use of AcquireRead and ReleaseRead

void ReceiveMessages(IFifoReader* pReader)
{

PCANMSG2 pCanMsg2;
UINT16 wCount;

while(pReader->AcquireRead((PVOID*) &pCanMsg2, &wCount) == VCI_OK)
{

for(UINT16 i = 0; i < wCount; i++)
{

// processing of message
.
.
.
// set pointer ahead to next message
pCanMsg2++;

}
// release read message
pReader->ReleaseRead(wCount);

}
}

Advantages of Use of AcquireRead and ReleaseRead

• Application decides when data is copied or not.

• Application decides how many messages are removed from the FIFO.

• Useful when applications process messages only selective.

Example:
If the application detects that at a moment only two of five incoming messages can be
processed, because otherwise there is an overflow somewhere else, ReleaseRead can be
called with value 2 instead of value 5. A subsequent calling of AcquireRead returns a pointer
to the three messages not yet processed.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 28 (154)

Reception Time of a Message

The reception time of a message is noted in the field dwTime of structure CANMSG resp.
CANMSG2. The field contains the number of timer ticks that elapsed since the start of the timer.
Dependent on the hardware the timer either starts with the start of the controller or with the
start of the hardware. The time stamp of the CAN_INFO_START message (see type CAN_
MSGTYPE_INFO of structure CANMSGINFO) , that is written to the receiving FIFOs of all active
message channels when the control unit is started, contains the starting point of the controller.

To get the relative reception time of a message (in relation to the start of the controller) subtract
the starting point of the controller (see CANMSGINFO) from the absolute reception time of the
message (see CANMSG resp. CANMSG2).

After an overrun of the counter the timer is reset.

Calculation of the relative reception time (Trx) in ticks:

• Trx = dwTime of message – dwTime of CAN_INFO_START (start of controller)

Field dwTime of the message see CANMSG resp. CANMSG2

Field dwTime of CAN_INFO_START see CAN_MSGTYPE_INFO of structure CANMSGINFO

Calculation of the length of a tick resp. the resolution of a time stamp in seconds: (ttsc):

• ttsc [s] = dwTscDivisor / dwClockFreq

Fields dwClockFreq and dwTscDivisor see CANCAPABILITIES

• Channels with extended functionality:

ttsc [s] = dwTscDivisor / dwTscClockFreq

Fields dwTscClockFreq and dwTscDivisor see CANCAPABILITIES2

Calculation of the reception time (Trx) in seconds:

• Trx [s] = dwTime * ttsc

Transmitting CAN Messages

Note that, when using interfaces with FPGA, error frames get the same time stamp as the
last received CAN message.

Messages are transmitted via the transmitting FIFO of the message channel.

► To access the FIFO, call interface IFifoWriter with function ICanChannel::
GetWriter resp. with a controller with extended functionality with function
ICanChannel2::GetWriter.

Write messages to the FIFO:

► Make sure that the parameter pvData points to a buffer of type CANMSG resp. CANMSG2.

► Make sure that the buffer is initialized with valid values.

► Call function IFifoWriter::PutDataEntry.

Only messages of the type CAN_MSGTYPE_DATA can be transmitted. Messages with other
values in the field uMsgInfo.Bytes.bType are ignored by the controller and automatically
rejected. For detailed information about the field uMsgInfo of a CAN message see
CANMSGINFO.

or

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 29 (154)

► Call function IFifoWriter::AcquireWrite.

→ Returns pointer to the next free entry of the FIFO and the number of messages that
can be addressed sequentially ascending from this position onward.

► Make sure, that exclusively data of the type CANMSG resp. with a controller with extended
functionality of the type CANMSG2 is copied to the pointer.

► To declare the messages that are written in the FIFO valid, call function IFifoWriter::
ReleaseWrite.

→ Controller transmits messages to the bus.

→ Returned address points directly to the memory used by the FIFO.

► Make sure, that no element outside the valid area is addressed during access.

Possible Use of PutDataEntry

BOOL TransmitByte(IFifoWriter* pWriter, UINT32 dwId, UINT8 bData)
{

CANMSG sCanMsg;

// Initialize CAN message.
sCanMsg.dwTime = 0; // send immediately, therefore 0
sCanMsg.dwMsgId = dwId; // message ID (CAN-ID)

sCanMsg.uMsgInfo.Bytes.bType = CAN_MSGTYPE_DATA;
sCanMsg.uMsgInfo.Bytes.bReserved = 0; // reserved, always 0

sCanMsg.uMsgInfo.Bits.srr = 0; // no Self-Reception
sCanMsg.uMsgInfo.Bits.rtr = 0; // no Remote-Request
sCanMsg.uMsgInfo.Bits.ext = 0; // Standard Frame Format
sCanMsg.uMsgInfo.Bits.dlc = 1; // only1 data byte

sCanMsg.abData[0] = bData;

// send message
return(pWriter->PutDataEntry(&sCanMsg) == VCI_OK);

}

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 30 (154)

Possible Use of AcquireWrite and ReleaseWrite with Message Channels with Extended
Functionality

BOOL TransmitByte(IFifoWriter* pWriter, UINT32 dwId, UINT8 bData)
{

PCANMSG2 pCanMsg2;

if(pWriter->AcquireWrite((PVOID*) &pCanMsg2, NULL) == VCI_OK)
{

// Initialize CAN message.
sCanMsg2.dwTime = 0; // send immediately, therefore 0
pCanMsg2->_rsvd_ = 0; // reserved, always 0
sCanMsg2.dwMsgId = dwId; // message ID (CAN-ID)

pCanMsg2->uMsgInfo.Bytes.bType = CAN_MSGTYPE_DATA;
pCanMsg2->uMsgInfo.Bytes.bFlags = 0; // preinitialized with 0
pCanMsg2->uMsgInfo.Bytes.bFlags2 = 0; // preinitialized with 0

pCanMsg2->uMsgInfo.Bits.fdr = 1; // use Fast Data bit rate
pCanMsg2->uMsgInfo.Bits.ext = 1; // Extended Frame Format
sCanMsg2.uMsgInfo.Bits.dlc = 1; // only1 data byte

pCanMsg2->abData[0] = bData;

// and send
pWriter->ReleaseWrite(1);

return TRUE;
}

return FALSE;
}

Transmitting Messages Delayed

A controller with set bit CAN_FEATURE_DELAYEDTX in field dwFeatures of structure
CANCAPABILITIES resp. CANCAPABILITIES2 supports the possibility to transmit messages
delayed, with a latency between two consecutive messages.

Delayed transmission can be used to reduce the message load on the bus. This prevents that
other to the bus connected participants receive too much data in too short a time, which can
cause data loss in slow nodes.

► In field dwTime of structure CANMSG resp. CANMSG2 specify the number of ticks that have
to pass at a minimum before the next message is written in the transmitting buffer by the
controller.

Delay Time

• Value 0 triggers no delay, that means a message is transmitted the next possible time.

• The maximal possible delay time is determined by the field dwMaxDtxTicks of structure
CANCAPABILITIES resp. CANCAPABILITIES2, the value in dwTime must not exceed
the value in dwMaxDtxTicks.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 31 (154)

Calculation of the duration of a tick delay counter in seconds (tdtx)

• tdtx [s] = dwDtxDivisor / dwClockFreq

• Channels with extended functionality:

tdtx [s] = dwDtxDivisor / dwDtxClockFreq

• Delay time of message in seconds (Tdelay):

Tdelay [s] = dwTime * tdtx

The specified delay time represents a minimal value as it can not be guaranteed that the
message is transmitted exactly after the specified time. Also, it has to be considered that if
several message channels are used simultaneously on one connection the specified value is
basically exceeded because the distributor handles all channels one after another.

► If an application requires a precise time sequence use the connection exclusively.

Sending Messages Uniquely

The controller tries to transmit messages with set bit uMsgInfo.Bits.ssm only once. If this
transmitting attempt is not successful the message is rejected and there is no automatic
transmitting repetition.

This happens for example if one or more bus participants are transmitting simultaneously. If the
participant that is transmitting a message with set uMsgInfo.Bits.ssm bit loses the bus
assignment (arbitration), the message is rejected and further transmitting is not attempted.

The functionality is exclusively available if bit CAN_FEATURE_SINGLESHOT in field dwFeatures
of structure CANCAPABILITIES resp. CANCAPABILITIES2 is set.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 32 (154)

Transmitting Messages with High Priority

Transmit messages with set uMsgInfo.Bits.hpm bit are registered by the controller in a
controller specific transmitting buffer that takes precedence over messages in the standard
transmitting buffer and primarily transmits.

The functionality is only available if the bit CAN_FEATURE_HIGHPRIOR in field dwFeatures of
structure CANCAPABILITIES resp. CANCAPABILITIES2 is set. If the bit is used observe
that messages that are already in the transmitting FIFO can not be overtaken. The functionality is
of minor impact resp. can only be sensibly used if the controller is opened exclusive and the
transmitting FIFO is empty before addressing a message with set bit uMsgInfo.Bits.hpm.

Transmitting Messages Confirmed (Self-Reception)

Transmit messages with set uMsgInfo.Bits.srr bit are, after they are transmitted
successfully from the controller to the bus, automatically received again and forwarded to all
active message channels by the distributor. Each message channel can decide on its own how to
handle this self reception messages.

Message Channel Type ICanChannel

• Write all self reception messages in the Receiving FIFO. Irrespective whether the message is
transmitted on this or another channel on the same controller.

• Each active channel receives each transmitted self reception message (uMsgInfo.Bits.
srr bit is always set).

Message Channel Type ICanChannel2

• If a self reception message is received, the channel verifies if the message originates from
itself.

• If the message originates from itself, the message is written in the receiving FIFO with set
srr bit irrespective of the current settings of the filter.

• If the messages originates from another channel of the same controller, the following
processing is dependent on the current settings of the filter:

– If while calling the function ICanChannel2::Initialize the operating mode is
combined with the constant CAN_FILTER_SRRA the channel treats all self reception
messages of all channels of the same controller as if they come from the same bus. The
message, as it passes the message filter of the channel, is written to the receiving FIFO
with deleted srr bit. For the application it seems as if the message has been
transmitted from another controller.

– If the message filter is initialized without the constant CAN_FILTER_SRRA the
channel exclusively receives self reception messages that are transmitted by itself. Self
reception messages transmitted via other channels are rejected. Messages that are
transmitted via a channel with deleted srr bit are invisible for other channels on the
same controller.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 33 (154)

5.2.3 Control Unit
The control unit provides the following functions via the interface ICanControl:

• configuration and control of the CAN controller

• configuration of the transmitting features of the CAN controller

• configuration of CAN message filters

• starting and stopping of data transmitting

• requesting of current operating state

To stop several competing applications from gaining control of the controller, the control unit
can exclusively be opened once by one application at a time.

Opening the Interface

Open with function IBalObject::OpenSocket.

► In parameter riid specify the value IID_ICanControl resp. IID_ICanControl2.

→ If the function returns an error code like access denied the component is already used
by another program.

► With Release close the control unit and release for access by other applications.

If other interfaces of the controller are opened when the controller is closed, the current settings remain,
i. e. a started CAN controller is not stopped automatically with calling Release as long as an additional
message channel or the cyclic transmitting list is opened.

Controller States

The control unit resp. the CAN controller is always in one of the following states:

Fig. 20 Controller states

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 34 (154)

Initializing the Controller

After the first opening of the control unit via the interface ICanControl or ICanControl2
the controller is in a non-initialized state.

► To leave non-initialized state, call function ICanControl::InitLine resp. with
extended functionality ICanControl2::InitLine.

→ Controller is in state offline.

► Specify the system mode and transmission rate with function ICanControl::
InitLine resp. ICanControl2::InitLine.

► Functions require in parameter pInitParam a pointer to a structure of CANINITLINE resp.
CANINITLINE2 with initialized structure.

► Specify the operating mode in field bOpMode.

► If a controller with extended functionality is used, activate the operating mode with field
bExMode.

► Specify the bit rate (see Specifying the Bit Rate, p. 35).

► Call the function.

→ Controller is initialized with specified values.

Controllers with extended functionality do not have message filters with adjustable operating
mode. The default and reset values for this filter operating mode are done separately for the 11
and 29 bit filter in the fields bSFMode and bEFMode (for more information see Message Filter, p.
42).

Starting the Controller

To start the CAN controller and data transmission between controller and bus:

► Make sure that the CAN controller is initialized (see Initializing the Controller, p. 34).

► Call function StartLine.

→ Control unit is in state online.

→ Incoming messages are forwarded to all active message channels.

→ Transmit messages are transferred to the bus.

After the successful start of the controller the control unit transmits an information message to
all active message channels. Field dwMsgId of the message contains the value CAN_MSGID_
INFO, the field abData[0] the value CAN_INFO_START and the field dwTime the relative
starting time.

Stopping (resp. Reset) the Controller

► Call function StopLine.

→ Controller is in state offline.

→ Data transfer between controller and bus is stopped.

→ Transport of messages between controller and all active message channels is stopped.

→ In case of an ongoing data transfer of the controller the function waits until the
message is transmitted completely over the bus, before the message transmission is
stopped. No faulty telegram is on the bus.

or

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 35 (154)

► Call function ResetLine.

→ Controller is in state not initialized.

→ Controller hardware and set message filters are reset to the predefined initial state.

→ Filter lists are deleted.

→ Transport of messages between controller and all active message channels is stopped.

After calling the function ResetLine a faulty message telegram on the bus is possible, if a not
completely transferred message is in the transmitting buffer of the controller.

If StopLine or ResetLine are called the control unit transmits an information message to all
active channels. The field dwMsgId of the message contains the value CAN_MSGID_INFO, the
field abData[0] the value CAN_INFO_STOP resp. CAN_INFO_RESET and the field dwTime the
value 0. Neither ResetLine nor StopLine delete the content of the transmitting and
receiving FIFO of the message channels.

Specifying the Bit Rate

Structure CANINITLINE

► Specify with fields bBtReg0 and bBtReg1.

The values of the fields bBtReg0 and bBtReg1 correspond to the values of the bus timing register
BTR0 and BTR1 of Philips SJA1000 CAN controller with a clock frequency of 16 MHz.

Values for bit timing register BTR0 and BTR1 resp. therefore defined constants of often used bit rates:

Bit rate (KBit) Predefined constants for BTR0, BTR1 BTR0 BTR1

5 CAN_BT0_5KB, CAN_BT1_5KB 0x3F 0x7F

10 CAN_BT0_10KB, CAN_BT1_10KB 0x31 0x1C

20 CAN_BT0_20KB, CAN_BT1_20KB 0x18 0x1C

50 CAN_BT0_50KB, CAN_BT1_50KB 0x09 0x1C

100 CAN_BT0_100KB, CAN_BT1_100KB 0x04 0x1C

125 CAN_BT0_125KB, CAN_BT1_125KB 0x03 0x1C

250 CAN_BT0_250KB, CAN_BT1_250KB 0x01 0x1C

500 CAN_BT0_500KB, CAN_BT1_500KB 0x00 0x1C

800 CAN_BT0_800KB, CAN_BT1_800KB 0x00 0x16

1000 CAN_BT0_1000KB, CAN_BT1_1000KB 0x00 0x14

For more information about BTR0 and BTR1 and their functionality see data sheet of Philips
SJA1000.

Structure CANINITLINE2

Allows a more independent setting of the bit rate and the sampling time.

► Specify with the fields sBtpSdr and sBtpFdr.

The field sBtpSdr defines the bit timing parameters for the nominal bit rate resp. the bit rate
during the arbitration period. If the controller supports fast data transfer and it is activated with
the extended operating mode CAN_EXMODE_FASTDATA the field sBtpFdr determines the bit
timing parameter for the fast data rate.

Time Periods

The field dwMode of structure CANBTP determines how the further fields dwBPS, wTS1, wTS2,
wSJW and wTDO are interpreted.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 36 (154)

If the bit CAN_BTMODE_RAW in dwMode is set, all other fields contain controller specific values
(see Mode CAN_BTMODE_RAW, p. 39).

If the bit CAN_BTMODE_RAW is not set, the field dwBPS contains the desired bit rate in bits per
second. The fields wTS1 and wTS2 divide a bit in two time periods before and after the sample
time resp. the time when the controller determines the value of the bit (Sample Point).

Fig. 21 Segmentation of a bit in different time periods

The amount of the fields wTS1 and wTS2 is the length of a bit tbit and determines the number of
time quanta in which a bit is divided:

• Number of time quanta per bit: Qbit = wTS1 + wTS2

With the highest possible values for wTS1 and wTS2 a bit can be divided in up to 65535+65535=
131070 time quanta.

The number of time quanta per bit Qbit determines together with the selected bit rate the length
of an individual time quantum tQ resp. its resolution:

• tQ = tbit / Qbit = 1 / (bit rate * Qbit)

Fig. 22 Segmentation of a bit in time quanta and segments

The figure shows exemplary a segmentation in 10 time quanta. wTS1=8 and wTS2=2 is selected,
with that the sample point is determined to 8/10 resp. 80 % of a bit time.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 37 (154)

Segments

According to the CAN specification a bit is divided into the segments SYNC, PROP plus PHASE1
and PHASE2. The beginning of a bit is expected in segment SYNC. The segment PROP serves as
compensation to the cable and component caused delays. The segments PHASE1 resp. PHASE2
serve as compensation for the phase errors, that are caused for example by oscillation tolerances.

If the following recessive dominant signal flank does not occur during SYNC a post scoring by the
controller follows. The primary scoring of the controller to the beginning of a message is always
done with the starting bit of a message.

Post scoring

• Segments PHASE1 resp. PHASE2 are lengthened or shortened depending on the length of
the phase.

• Number of time quanta (QSJW) necessary to compensate the phase errors is called
synchronization jump width (SJW) and specified in the field wSJW.

• The time shifting tSJW that can be compensated with that can be calculated with:

tSJW = tQ * wSJW

Synchronization Jump Width

A post scoring reduces the phase error maximally by the set synchronization jump width. If the
error is not completely compensated by that a remaining phase error occurs. Because a post
scoring is only done after a recessive dominant signal flank in error-free transmission it lasts
maximally 10 bit times (5 dominate bits followed by 5 recessive bits) until a new recessive
dominate signal flank occurs. In this 10 bit times remaining phase errors can summarize and have
to be corrected by the set synchronization jump width. This results in the following condition:

Condition 1

• 2 *ΔF * (10 * tbit) ≤ tSJW (1)

In case of an error on the bus it is possible that up to 6 bits are transmitted in a row and a stuff
error occurs. The controller that recognizes that at first (and is error active) then transmits an
error telegram, that consists of 6 bits. Other controllers on the bus recognize this as stuff error
and echo also an error telegram. On the bus a row of up to 13 dominate bits occur. In this case
the next post scoring can earliest be done after 13 bit times. In this time also reset phase errors
summarize. The compensation by the set synchronization jump width must be possible. This
results in the second condition:

Condition 2

• 2 *ΔF * (13 * tbit – tPHASE2) ≤ min(tPHASE1, tPHASE2) (2)

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 38 (154)

Time Quanta

Observe the following when specifying:

• Number of time quanta inside of segment PROP (QPROP): choose according to the cable and
component caused delays.

• The minimum number of time quanta in PHASE1 (QPHASE1) is determined by the number of
time quanta (QSJW) that are needed to compensate phase errors: must be higher than or
equal the synchronization jump width.

• The minimum number of time quanta in PHASE2 (QPHASE2) is determined by the
synchronization jump width: consider processing time of the controller.

• Information processing time (IPT) begins with the sampling time and requires a certain
amount of time quanta (QIPT): QPHASE2 must be higher than or equal QIPT + QSJW.

The number of time quanta in the first segment until the sampling point (QSP) is equal to the sum
of all time quanta in segments SYNC, PROP and PHASE1 and is determined with the value wTS1.
The number of time quanta in the second segment after the sampling point (QSEG2) is equal to
the sum of all time quanta in segments PHASE2 and is determined with the value wTS2.

The length of a time quantum tQ also determines the value of wSJW and therefore is important
for the post scoring resp. the compensation of phase errors.

In example Segmentation of a bit in time quanta and segments, p. 36 with wTS1=8, wTS2=2 and
Qbit=10 the sampling point is 80 %. The resolution of a time quantum is 1/10 resp. 10 % of a bit
time. If the value 1 is specified for wSJW the sampling point of a phase correction is shifted
about ± 10 % of a bit time. Higher values than 1 are not allowed for wSJW in this example,
because sampling errors could occur.

With a high number of time quanta phase errors can be corrected more precisely because the
length of a time quanta is shortened by this.

A sampling point of 80 % can for example be reached if for wTS1 the value 80 and for wTS2 the
value 20 (Qbit=100) is specified. The resolution of a time quantum then is 1 % of a bit time. In this
case with wSJW=1 phase errors up to ±1 % of a bit time can be corrected.

The resolution of a time quantum theoretically can be shortened down to 1/131070 ≈7.63*10-6
resp. 7.63 ppm. As the values for the individual segments have to be converted to the hardware
specific register, the limits are higher. Regarding the SJA1000 with 16 MHz clock frequency the
maximum possible value for Qbit is 25 (1+16+8) and therefore the minimum possible resolution is
1/25 resp. 4 % of a bit time. With higher bit times the number of time quanta is reduced and is
for 1 Mbit only 8, that results in a resolution of 1/8 resp. 12.5 % of a bit time.

► To get information about the value ranges of the individual segments supported by the
hardware call function ICanSocket2::GetCapabilities.

→ Fields sSdrRangeMin, sSdrRangeMax resp. sFdrRangeMin and sFdrRangeMax of
structure CANCAPABILITIES2 indicated with calling of the function contain
hardware specific minimum and maximum values.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 39 (154)

Mode CAN_BTMODE_RAW

• Field dwBPS contains the value for the frequency divider (NP) in the CAN controller (instead
of bit rate).

• Field wTS1 contains segments PROP and PHASE1 (instead of time segments SYNC, PROP and
PHASE1)

• Number of time quanta in segment SYNC is fixed and always one.

• Assignments of fields wTS2 and wSJW remain the same.

The following figure shows the assignment of the fields to the individual segments and the
generation of the frequency for the bit processor and the resulting times.

Fig. 23 Clock generator for the bit processor in the CAN controller

The field dwCanClkFreq of structure CANCAPABILITIES2 returns the frequency of the clock
generator fCAN for the bit processor. This system frequency is divided by an adjustable frequency
divider (prescaler). The output of the frequency divider determines the length of a time quantum
tQ:

• tQ = tCAN * NP = NP / fCAN

The bit time tbit is an integral multiple of a time quantum tQ and is calculated by:

• tbit = tQ * Qbit = Qbit * NP / fCAN

The bit rate fbit is calculated by:

• fbit = 1/tbit = fCAN / (Qbit * NP)

To specify the bit rate fbit with predefined frequency fCAN the prescaler NP and the number of
time quanta Qbit must be specified.

A possibility to specify the parameters is for example to begin with the maximally possible time
quanta max(Qbit) and to determine with that the value for the prescaler NP.

• NP = fCAN / (fbit * Qbit)

If no appropriate value results for NP, the number of time quanta is reduced by 1 and a new
value for NP is calculated. This is proceeded until either a appropriate value for NP is found or the
value has fallen below the minimal amount of time quanta min(Qbit).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 40 (154)

If the value has fallen below the minimal amount of time quanta there is no solution for the
demanded bit rate. In the other case with the found values for NP and Qbit the values for wTS1,
wTS2 and wSJW can be determined in the following way:

► Calculate the time of a time quantum:

tQ = NP / fCAN

► Determine the amount of time quanta QSJW required for the post scoring with Condition 1
and Condition 2.

The value is dependent on the oscillation tolerance ΔF. The oscillation tolerance of Ixxat CAN interfaces is
normally smaller than 0.1 % but in this case the greatest oscillation tolerance of all nodes existing in the
network must be considered.

► To calculate the number of required time quanta for the segment PROP (QPROP) divide the
cable and component caused delays tPROP by the length of a time quantum tQ and round up
to the next integral number:

QPROP = round_up(tPROP / tQ)

► Calculate the total number of time quanta for the phase compensation QPHASE:

QPHASE = Qbit – (QSYNC + QPROP) = Qbit - 1 - QPROP

QPHASE1 and QPHASE2 are calculated by a integral division of QPHASE by 2 and the remaining. In
case of an uneven value for QPHASE the smaller part is assigned to QPHASE1 and the greater to
QPHASE2.

QPHASE1 = INT(QPHASE/2)

QPHASE2 = INT(QPHASE/2) + MOD(QPHASE/2)

If QPHASE1 is less than QSJW or QPHASE2 is less than QSJW + QIPT there is no solution for the
requested bit rate. The minimum value of sSdrRangeMin.wTS2 resp. sFdrRangeMin.wTS2
corresponds to QIPT.

For more information about the setting of the bit rate see CAN resp. CAN FD specification and in
the CAN FD white paper of Bosch both in chapter “Bit Timing Requirements”.

For information about the calculation of the parameter for the fast bit rate see CAN FD
specification.

Determine the Bit Rate Used in the Network

If the CAN connector is connected to a running network with unknown bit rate the current bit
rate can be determined.

► Use the CAN controller in listen only mode.

► Make sure that two further bus participants are transmitting messages.

► Call function DetectBaud.

→ Field bIndex of structure CANBTRTABLE contains the table index of the found bus
timing values.

► The determined bus timing values can be used when calling the function InitLine.

Function DetectBaud requires a pointer to the initialized structure of type CANBTRTABLE,
that contains a predefined set of bit timing values. The extended version requires a pointer to
the initialized structure of type CANBTPTABLE, that contains a predefined set of bit timing
values for the needed standard resp. nominal bit rates and eventually also for the according fast
data bit rate.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 41 (154)

Example of Use of the Function to Adjust CAN Controller Automatically to the Bit Rate of the
Running System:

BOOL AutoInitLine(ICanControl* pControl)
{

static UINT8 abBtr0[] =
{

CAN_BT0_10KB, CAN_BT0_20KB, CAN_BT0_50KB,
CAN_BT0_100KB, CAN_BT0_125KB, CAN_BT0_250KB,
CAN_BT0_500KB, CAN_BT0_800KB, CAN_BT0_1000KB

};

static UINT8 abBtr1[] =
{

CAN_BT1_10KB, CAN_BT1_20KB, CAN_BT1_50KB,
CAN_BT1_100KB, CAN_BT1_125KB, CAN_BT1_250KB,
CAN_BT1_500KB, CAN_BT1_800KB, CAN_BT1_1000KB

};
HRESULT hResult;
CANBTRTABLE sBtrTab;

// determine bit rate
sBtrTab.bCount = sizeof(abBtr0) / sizeof(abBtr0[0]);
sBtrTab.bIndex = 0xFF;
memcpy(sBtrTab.abBtr0, abBtr0, sizeof(abBtr0));
memcpy(sBtrTab.abBtr1, abBtr1, sizeof(abBtr1));

hResult = pControl->DetectBaud(10000, &sBtrTab);
if (hResult == VCI_OK)
{

CANINITLINE sInitParam;

sInitParam. bOpMode = CAN_OPMODE_STANDARD|CAN_OPMODE_ERRFRAME;
sInitParam. bReserved = 0;
sInitParam. bBtReg0 = sBtrTab.abBtr0[sBtrTab.bIndex];
sInitParam. bBtReg1 = sBtrTab.abBtr1[sBtrTab.bIndex];

hResult = pControl->InitLine(&sInitParam);
}

return(hResult == VCI_OK);
}

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 42 (154)

5.2.4 Message Filter
All control units and message channels with expanded functionality have a two-level message
filter to filter the data messages received from the bus. Information, error and status messages
that are transmitted by the controller resp. the control unit always can pass unhindered.

The data messages are exclusively filtered by the ID in field dwMsgId of structure CANMSG resp.
CANMSG2. The other fields of a message, including the data bytes in field abData are not
considered.

Operating Modes

Message filters can be ran in different operating modes:

• Blocking mode (CAN_FILTER_LOCK):

Filter blocks all messages of type CAN_MSGTYPE_DATA, independent of the ID. Used for
example if an application is only interested in information, error or status messages.

• Passing mode (CAN_FILTER_PASS):

Filter is completely opened and all data messages can pass. Default operating mode when
using the interface ICanChannel.

• Inclusive filtering (CAN_FILTER_INCL):

All data messages with an ID either released in the acceptance filter or registered in the
filter list can pass the filter (e. i. all registered IDs). Default operating mode when using the
interface ICanControl.

• Exclusive filtering (CAN_FILTER_EXCL):

All data messages with an ID either released in the acceptance filter or registered in the
filter list are blocked by the filter (e. i. all registered IDs).

If the interface ICanControl is used, the operating mode of the filter can not be changed and
is preset to CAN_FILTER_INCL. If the interface ICanControl2 resp. ICanChannel2 is
used, the operating mode can be set to one of the above stated modes with the function
SetFilterMode.

To ask for the operating mode of the filter call function GetFilterMode.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 43 (154)

Inclusive and Exclusive Operating Mode

Fig. 24 Filtering mechanism inclusive and exclusive operating mode

The first filter level consists of an acceptance filter that compares the ID of a received message
with a binary bit sample. If the ID correlates with the set bit sample the ID is accepted. In case of
inclusive operating mode the message is accepted. In case of exclusive operating mode the
message is immediately rejected.

If the first filter level does not accept the ID it is forwarded to the second filter level. The second
filter level consists of a list with registered message IDs. If the ID of the received message is
equal to an ID in the list, the message is accepted in case of inclusive filtering and rejected in
case of exclusive filtering.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 44 (154)

Filter Chain

Each message channel is connected to a controller either directly or indirectly via a distributor
(see Message Channels, p. 23). If a filter is used both with the controller and with the message
channel a multi-level filter chain is formed. Messages that are filtered out by the controller are
invisible for the down-streamed channels.

Fig. 25 Filter Chain

Setting the Filter

Control units and message channels have separated and independent filters for 11 bit and 29 bit
IDs. Messages with 11 bit ID are filtered by the 11 bit filter and messages with 29 bit ID by the 29
bit filter.

To distinguish between 11 and 29 bit filter all stated functions have the parameter bSelect.

Changes of the filters during operation are not possible.

► Make sure that the control unit is offline resp. that the message channel is inactive.

If the interfaces ICanControl2 resp. ICanChannel2 are used the operating mode of the
filter is preset during the initialization of the component. The specified value serves
simultaneously as default value for the function ICanControl2::ResetLine.

► To set the filter after initialization, call function SetFilterMode.

► To set the acceptance filter call function SetAccFilter.

► Specify the filter list with functions AddFilterIds and RemFilterIds.

► In parameter bSelect select 11 or 29 bit filter.

► In parameters dwCode and dwMask specify two bit samples that determine one or more IDs
that must be registered.

→ Value of dwCode determines the bit sample of the ID.

→ dwMask determines which bits in dwCode are valid and used for the comparison.

If a bit in dwMask has the value 0 the correlating bit in dwCode is not used for the comparison.
But if it has the value 1 it is relevant for the comparison.

With the 11 bit filter exclusively the lower 12 bits are used. With the 29 bit filter the bits 0 to 29
are used. Bit 0 of every value defines the value of the remote transmission request bit (RTR). All
other bits of the 32 bit value must be set to 0 before one of the functions is called.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 45 (154)

Correlation between the bits in the parameters dwCode and dwMask and the bits in the message
ID:

11 Bit Filter
Bit 11 10 9 8 7 6 5 4 3 2 1 0

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

29 Bit Filter
Bit 29 28 27 26 25 ... 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ... ID4 ID3 ID2 ID1 ID0 RTR

The bits 1 to 11 resp. 1 to 29 of the values in dwCode resp. dwMask correspond to the bits 0 to
10 resp. 0 to 28 of the ID of a CAN message.

The following example shows the values that must be used for dwCode and dwMask to register
message IDs in the range of 100 h to 103 h (of which the RTR bit must be 0) in the filter:

dwCode 001 0000 0000 0

dwMask 111 1111 1100 1

Valid IDs: 001 0000 00xx 0

ID 100h, RTR = 0: 001 0000 0000 0

ID 101h, RTR = 0: 001 0000 0001 0

ID 102h, RTR = 0: 001 0000 0010 0

ID 103h, RTR = 0: 001 0000 0011 0

The example shows that with a simple acceptance filter only individual IDs or groups of IDs can
be released. If the desired identifiers do not correspond with a certain bit sample, a second filter
level, a list with IDs, must be used. The amount of IDs a list can receive can be configured.
Normally the 11 bit ID list is configured in order that all 2048 possible IDs have enough space.

► Register individual IDs or groups of IDs with function AddFilterIds.

► If necessary remove from the list with function RemFilterIds.

The parameters dwCode and dwMask have the same format as showed above.

If AddFilterIds is called with same values as in the above example the function enters the
identifier 100 h to 103 h to the list.

► To register only an individual ID in the list, specify the desired ID (including RTR bit) in
dwCode and in dwMask the value 0xFFF (11 bit ID) resp. 0x3FFFFFFF (29 bit ID).

► To disable the acceptance filter completely, when calling function SetAccFilter enter in
dwCode the value CAN_ACC_CODE_NONE and in dwMask the value CAN_ACC_MASK_
NONE.

→ Filtering is exclusively done with ID list.

or

► Configure the acceptance filter with the values CAN_ACC_CODE_ALL and CAN_ACC_
MASK_ALL.

→ Acceptance filter accepts all IDs and ID list is ineffective.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 46 (154)

5.2.5 Cyclic Transmitting List
With the optionally provided transmitting list of the controller up to 16 messages can be
transmitted cyclically. The access to this list is limited to one application and therefore can not be
used by several programs simultaneously.

Open interface with function IBalObject::OpenSocket.

► In parameter riid enter value IID_ICanScheduler.

► With a controller with extended functionality enter value IID_ICanScheduler2 in
parameter riid.

→ If function returns an error code respective access denied the transmitting list is
already under control of another program and can not be opened again.

► To allow access for other applications, close the open transmitting list with function
Release.

► Add message objects with ICanScheduler::AddMessage resp. in case of controller
with extended functionality with ICanScheduler2::AddMessage to the list. Functions
expect pointer to an initialized object of type CANCYCLICTXMSG resp.
CANCYCLICTXMSG2.

→ If successfully executed both functions return the list index of the newly added
transmitting object.

One controller exclusively supports one transmitting list. Irrespective if the functions of the
interface ICanScheduler or ICanScheduler2 are used, the list index always refers to the
same list. As the interfaces are exclusively different regarding the data type of the transmitted
messages, whereas the functionality is identical, only the functions of the interface
ICanScheduler is described hereafter.

► Specify the cycle time of a message in number of ticks in field wCycleTime of structure
CANCYCLICTXMSG or CANCYCLICTXMSG2.

► Make sure that the specified value is higher than 0 but less than or equal the value in
CANCAPABILITIES field dwCmsMaxTicks of one of the structures CANCAPABILITIES
resp. CANCAPABILITIES2.

► Calculate the length of a tick resp. the cycle time of the transmitting list (tcycle) with values in
fields dwClockFreq and dwCmsDivisor (see CANCAPABILITIES), resp. with extended
functionality with values in fields dwCmsClockFreq and dwCmsDivisor (see
CANCAPABILITIES2) with the following formula:

tcycle [s] = (dwCmsDivisor / dwClockFreq)

or

tcycle [s] = (dwCmsDivisor / dwCmsClockFreq)

The transmitting task of the cyclic transmitting list divides the available time in individual
segments resp. time frames. The length of a time frame is exactly the same as the length of a tick
resp. the cycle time (tcycle).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 47 (154)

Fig. 26 Transmitting task of the cyclic transmitting list with 24 time frames

The number of the time frames supported by the transmitting task is equal to the value in field
dwCmsMaxTicks of structure CANCAPABILITIES resp. CANCAPABILITIES2.
dwCmsMaxTicks contains the value 24.

The transmitting task can transmit exclusively one message per tick, e. i. exclusively one
transmitting object can be matched to a time frame. If the transmitting object is created with a
cycle time of 1 all time frames are occupied and no other objects can be created. The more
transmitting objects are created, the larger their cycle time must be selected. The rule is: The
total of all 1/wCycleTime has to be less than 1.

In the example a message shall be transmitted every 2 ticks and a further message every 3 ticks,
this amounts 1/2 + 1/3 = 5/6 = 0.833 and therefore a valid value.

If the transmitting object 1 is created with a wCycleTime of 2 the time frames 2, 4, 6, 8, etc. are
occupied. If the second transmitting object is created with a wCycleTime of 3, it leads to a
collision in the time frames 6, 12, 18, etc. because these time frames are already occupied by the
transmitting object 1.

Collisions are resolved in shifting the new transmitting object in the respectively next free time
frame. The transmitting object of the example above then occupies the time frames 3, 7, 9, 13,
19, etc. The cycle time of the second object therefore is not met exactly and in this case leads to
an inaccuracy of +1 tick.

The temporal accuracy of the transmitting of the objects is heavily depending on the message
load on the bus. With increasing load the transmitting time gets more and more imprecise. The
general rule is that the accuracy decreases with increasing bus load, smaller cycle times and
increasing number of transmitting objects.

The field bIncrMode of structure CANCYCLICTXMSG orCANCYCLICTXMSG2 determines if
certain parts of a message are automatically incremented after transmitting or if they remain
unmodified.

If in bIncrMode CAN_CTXMSG_INC_NO is specified, the content of the message remains
unmodified. With the value CAN_CTXMSG_INC_ID the field dwMsgId of the message
automatically increases by 1 after every transmission. If field dwMsgId reaches the value 2048
(11 bit ID) resp. 536.870.912 (29 bit ID) an overflow automatically takes place.

With the values CAN_CTXMSG_INC_8 resp. CAN_CTXMSG_INC_16 an individual 8 bit resp.
16 bit value is increment in the data field abData[] after each transmission. The field bByteIndex

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 48 (154)

of structure CANCYCLICTXMSG or CANCYCLICTXMSG2 determines the starting position of
the data value.

Fig. 27 Auto increment of data fields

Regarding 16 bit values, the low byte (LSB) is located in field abData[bByteIndex] and the high
byte (MSB) in field abData[bByteIndex+1]. If the value 255 (8 bit) resp. 65535 (16 bit) is reached,
an overflow to 0 takes place.

► If necessary, remove the transmitting object from the list with function RemMessage. The
function expects the list index of the object to remove returned by AddMessage.

► To transmit a newly created transmitting object, call function StartMessage.

► If necessary, stop transmitting with function StopMessage.

The current status of the transmitting task and of all created transmitting objects is returned by
the function GetStatus. The required memory is provided as structure of type
CANSCHEDULERSTATUS by the application. After successful execution of the function the
fields bTaskStat and abMsgStat contain the state of the transmitting list and the transmitting
objects.

To determine the state of an individual transmitting object the list index returned by function
AddMessage is used as index in the table abMsgStat i. e. abMsgStat[Index] contains the state
of the transmitting object of the specified index.

The transmitting task is deactivated after opening the transmitting list. The transmitting task
does not transmit any message in deactivated state, even if the list is created and contains
started transmitting objects.

► To start all transmitting objects simultaneously, configure all transmitting objects with
function StartMessage.

► Start a transmitting task with function Resume.

► To deactivate a transmitting task call function Suspend.

► To reset a transmitting task call function Reset.

→ Transmitting task is stopped.

→ All registered transmitting objects are removed from the specified cyclic transmitting
list.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 49 (154)

5.3 LIN-Controller

Fig. 28 Components LIN controller

• access to individual components via function IBalObject::OpenSocket (required IDs
see figure above)

• access to individual sub components via interfaces ILinControl or ILinMonitor (see
Message Monitors, p. 50)

ILinSocket (see Socket Interface, p. 49) provides the following functions:

• requesting of LIN controller functionalities and state

• creating of message monitors, that are required for receive messages

ILinControl (see Control Unit, p. 53) provides the following functions:

• configuration of LIN controller

• configuration of transmitting features

• requesting of current controller state

5.3.1 Socket Interface
The interface ILinSocket is not subjected to any access restrictions and can be opened by
multiple applications simultaneously. Controlling via this interface is not possible.

Open with function IBalObject::OpenSocket.

► In parameter riid enter the value IID_ILinSocket.

► To request information about functions of the LIN controller, type of LIN controller and the
supported functions, call function GetCapabilities (for more information see
LINCAPABILITIES).

► To determine the current operating mode and status of the controller, call function
GetLineStatus (for more information see LINLINESTATUS).

► To create message monitors, call function CreateMonitor (for more information see
Message Monitors, p. 50).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 50 (154)

5.3.2 Message Monitors
A LIN message monitor consists of a receiving FIFO. The size of an element in the FIFO conforms
to the size of the structure LINMSG.

Fig. 29 Components and interfaces LIN message monitor

The functionality of a message monitor is the same, irrespective whether the connection is used
exclusively or not.

In case of exclusive use the message monitor is directly connected to the LIN controller.

Fig. 30 Exclusive use

In case of non-exclusive use the individual message monitors are connected to the LIN controller
via a distributor. The distributor transfers all on the LIN controller received messages to all active
monitors. No monitor is prioritized i. e. the algorithm used by the distributor is designed to treat
all monitors as equal as possible.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 51 (154)

Fig. 31 Non-exclusive use (with distributor)

Creating a Message Monitor

Create a message monitor with function ILinSocket::CreateMonitor.

► To use the controller exclusively (only possible when creating the first message monitor)
enter in parameter fExclusive the value TRUE. After successful execution no further
message monitors can be created.

or

To use the controller non-exclusively (creation of any number of monitors is possible) enter
in parameter fExclusive the value FALSE.

Initializing the Message Monitor

A newly generated message monitor contains no receiving FIFO.

► To create a receiving FIFO, call function Initialize.

► Specify the size of the receiving FIFO in parameter wRxSize.

► Make sure that the value in parameter wRxSize is higher than 0.

The size of an element in the FIFO conforms to the size of the structure LINMSG.
All functions to access the data elements of the FIFO attend resp. return a pointer to structures
of type LINMSG.

Activating the Message Monitor

A newly generated monitor is deactivated. Messages are only received by the bus if the message
monitor is active and if the LIN controller is started. For more information about LIN controllers
see chapter Control Unit, p. 53.

► To activate the message monitor, call function Activate.

► Disconnect an active monitor with function Deactivate.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 52 (154)

Reading Messages From the Receiving FIFO:

► To access the receiving FIFO, call function ILinMonitor::GetReader.

→ Pointer to interface IFifoReader is returned.

Reading messages from the FIFO:

► Call function IFifoReader::GetDataEntry.

Make sure, that parameter pvData points to a buffer of type LINMSG.

or

► Call function IFifoReader::AcquireRead.

→ Returns pointer to next free message in the FIFO and the number of messages that can
be read sequentially from this position onward.

→ Function returns pointer to array of type LINMSG.

► After processing, remove the data with function IFifoReader::ReleaseRead from
the FIFO.

The address returned by AcquireRead points directly to the memory of the FIFO. Make sure that
exclusively elements of the valid range are addressed.

Possible Use of GetDataEntry

void DoMessages(IFifoReader* pReader)
{

LINMSG sLinMsg;
while(pReader->GetDataEntry (&sLinMsg) == VCI_OK)
{

// Processing of message
}

}

Possible Use of AcquireRead and ReleaseRead

void DoMessages(IFifoReader* pReader)
{

PLINMSG pLinMsg;
UINT16 wCount;

while(pReader->AcquireRead((PVOID*) &pLinMsg, &wCount) == VCI_OK)
{

for(UINT16 i = 0; i < wCount; i++)
{

// processing of message
.
.
.
// set pointer ahead to next message
pLinMsg++;

}

// release read message
pReader->ReleaseRead(wCount);

}
}

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 53 (154)

5.3.3 Control Unit
The control unit provides the following functions via the interface ILinControl:

• configuration of operating mode

• configuration of transmitting features

• requesting of current controller state

The control unit can exclusively be opened by one application. Simultaneous opening by several
programs is not possible.

Opening the Interface

Open with function IBalObject::OpenSocket.

► In parameter riid enter the value IID_ILinControl.

→ If the function returns an error code like access denied the component is already used
by another program.

► With Release close the control unit and release for access by other applications.

If other interfaces of the controller are opened when the controller is closed, the current settings remain,
i. e. a started LIN controller is not stopped automatically with calling Release as long as an additional
message monitor is opened.

Fig. 32 LIN controller states

Initializing the Controller

After the first opening of the interface ILinControl the controller is in a non-initialized state.

► To leave a non-initzialized state, call function InitLine.

→ Controller is in state offline.

► Specify the system mode and transmission rate with function InitLine.

→ Function requires in parameter pInitParam a pointer to an initialized structure of type
LININITLINE.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 54 (154)

► Specify the transmission rate in bits per second in field wBitrate of structure
LININITLINE.

Valid values are between 1000 and 20000 Bit/s, resp. between the values specified by LIN_
BITRATE_MIN and LIN_BITRATE_MAX.

If the controller supports automatic bit identification, in field wBitrate can be entered the value
LIN_BITRATE_AUTO if the LIN controller is already connected to an active network.

Starting and Stopping the Controller

► To start the LIN controller, call function StartLine.

→ LIN controller is in state online.

→ LIN controller is actively connected to bus.

→ Incoming messages are forwarded to all opened and active message monitors.

► To stop the LIN controller, call function StopLine.

→ LIN controller is in state offline.

→ Message transfer to the monitor is interrupted and controller is deactivated.

→ In case of an ongoing data transfer the function waits until the message is transmitted
completely over the bus, before the message transmission is stopped.

► Call function ResetLine to shift the controller in state not initialized and to reset the
controller hardware.

With calling the function ResetLine a faulty message telegram on the bus is possible if an ongoing
transmission is interrupted.

Neither ResetLine nor StopLine delete the content of the receiving FIFOs of a message
monitor.

Transmitting CAN messages

Messages can be transmitted directly with the function WriteMessage or can be registered in
a response table in the controller.

Fig. 33 Internal structure of a control unit

The control unit contains an internal response table with the response data for the IDs
transmitted by the master. If the controller detects an ID that is assigned to it and transmitted by
the master it transmits the response data entered in the table at the corresponding position
automatically to the bus.

► To chance or update the content of the response table, call function WriteMessage.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Accessing the Bus Controller 55 (154)

► Enter in parameter fSend the value FALSE and in parameter pLinMsg a valid LIN message.

► To clear the response table, call function ResetLine.

Field abData of structure LINMSG contains the response data. The LIN message must be of type
LIN_MSGTYPE_DATA and must contain an ID in the range 0 to 63.

Irrespective of the operating mode (master or slave) the table must be initialized before the
controller is started. The table can be updated at any time without stopping the controller.

► Transmit messages directly to the bus with function WriteMessage.

► Set parameter fSend to value TRUE.

→ Message is registered in the transmitting buffer of the controller, instead of the
response table.

→ Controller transmits message to bus as soon as it is free.

If the controller is configured as master, control messages LIN_MSGTYPE_SLEEP and LIN_
MSGTYPE_WAKEUP and data messages of type LIN_MSGTYPE_DATA can be transmitted
directly. If the controller is configured as slave exclusively LIN_MSGTYPE_WAKEUP messages
can be directly transmitted. With all other message types the function returns an error code.

A message of type LIN_MSGTYPE_SLEEP generates a goto-Sleep frame, a message of type
LIN_MSGTYPE_WAKEUP a wake-up frame on the bus. For more information see chapter
Network Management in LIN specifications.

In the master mode the function WriteMessage also serves for transmitting IDs. For this a
message of type LIN_MSGTYPE_DATA with valid ID and data length, where the bit uMsgInfo.
Bits.ido is set to 1, is required (for more information see LINMSGINFO).

Irrespective of the value of the parameter fSend WriteMessage always returns immediately to
the calling program without waiting for the transmission to be completed. If the function is
called before the last transmission is completed or before the transmission buffer is free again,
the function returns with a respective error code.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Error Messages 56 (154)

6 Error Messages
Error message Description

LNK2001 <unresolved external problem> GUIDs are not initialized. Include the c-file uuids.c from the
demo, to include the header files.

LNK2005 <symbol> already defined GUIDs are initialized in two different implementation files.
Make sure that GUIDs are only initialized once.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 57 (154)

7 Interface Description
7.1 Exported Functions
7.1.1 VciInitialize

Initializes the VCI for the calling process.

HRESULT VCIAPI VciInitialize (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function must be called at the beginning of a program to initialize the DLL for the calling
process.

7.1.2 VciFormatError
Converts a VCI error code into a text resp. a character string that is readable for the user.

HRESULT VCIAPI VciFormatError (
HRESULT hrError,
PTCHAR pszError,
UINT32 dwLength);

Parameter
Parameter Dir. Description
hrError [in] Error code that is to be converted into text.
pszError [out] Pointer to buffer for the text string. Saves the character string including the final

0-character in this memory area.
dwLength [in] Size of buffer in number of strings.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Parameter pszError points to invalid buffer.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 58 (154)

7.1.3 VciGetVersion
Determines the current version numbers of the VCI and of the operating system that is currently
running.

HRESULT VCIAPI VciGetVersion (PVCIVERSIONINFO pVersionsInfo);

Parameter
Parameter Dir. Description

pVersionsInfo [out] Pointer to data block of type VCIVERSIONINFO. If run successfully the function
stores the version information in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can be called at the beginning of a program to check whether the current VCI of the
application is sufficient. For more information about the information that is returned by this
function see description of the data structure VCIVERSIONINFO.

7.1.4 VciCreateLuid
Generates a VCI-specific, unique ID.

HRESULT VCIAPI VciCreateLuid (PVCIID pVciid);

Parameter
Parameter Dir. Description

pVciid [out] Pointer to variable to type VCIID. If run successfully the function saves the VCI-
specific ID in this variable.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Returned ID can be used during the running time of the system to mark application specific
objects as unique. ID loses validity with next start of the system.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 59 (154)

7.1.5 VciLuidToChar
The function converts a unique ID (VCIID) into a character string.

HRESULT VCIAPI VciLuidToChar (
REFVCIID rVciid,
PCHAR pszLuid,
LONG cbSize);

Parameter
Parameter Dir. Description
rVciid [in] Reference to the VCI-specific unique ID to be converted (VCIID)
pszLuid [out] Pointer to buffer for the character string. If run successfully the function saves the

converted VCI-specific ID in this memory area. Buffer must provide space for at
least 17 characters including the final 0–character.

cbSize [in] Size in bytes of buffer specified in pszLuid

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Parameter pszLuid points to invalid buffer.
VCI_E_BUFFER_OVERFLOW The buffer specified in pszLuid is not large enough for the character string.

7.1.6 VciCharToLuid
Converts a 0-terminated character string into a VCI-specific unique ID (VCIID).

HRESULT VCIAPI VciCharToLuid (
PCHAR pszLuid,
PVCIID pVciid);

Parameter
Parameter Dir. Description
pszLuid [in] Pointer to the 0-terminated string to be converted
pVciid [out] Pointer to variable to type VCIID. If run successfully, the function returns the

converted ID in this variable.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Parameter pszLuid or pVciid points to invalid buffer.
VCI_E_FAIL In pszLuid specified character string can not be converted to valid ID.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 60 (154)

7.1.7 VciGuidToChar
Converts a globally unique identifier (GUID) into a character string.

HRESULT VCIAPI VciGuidToChar (
REFGUID rGuid,
PCHAR pszLuid,
LONG cbSize);

Parameter
Parameter Dir. Description
rGuid [in] Reference to the globally unique ID to be converted
pszGuid [out] Pointer to buffer for the character string. If run successfully the function saves the

converted globally unique ID in this memory area. Buffer must provide space for
at least 39 characters including the final 0-character.

cbSize [in] Size in bytes of buffer specified in pszGuid

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Parameter pszLuid points to invalid buffer.
VCI_E_BUFFER_OVERFLOW The buffer specified in pszLuid is not large enough for the character string.

7.1.8 VciCharToGuid
Converts a 0-terminated character string into a globally unique ID (GUID).

HRESULT VCIAPI VciCharToGuid (
PCHAR pszGuid,
PGUID pGuid);

Parameter
Parameter Dir. Description
pszGuid [in] Pointer to the 0-terminated string to be converted
pGuid [out] Pointer to variable to type GUID. If run successfully, the function returns the

converted ID in this variable.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Parameter pszGuid or pGuid points to invalid buffer.
VCI_E_FAIL In pszGuid specified character string can not be converted into a valid ID.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 61 (154)

7.1.9 VciGetDeviceManager
Determines a pointer to the interface IVciDeviceManager of the VCI device manager.

HRESULT VCIAPI VciGetDeviceManager (
IVciDeviceManager** ppDevMan);

Parameter
Parameter Dir. Description

ppDevMan [out] Address of a pointer variable. If run successfully the function saves the pointer to
interface IVciDeviceManager of the VCI device manager. In case of an error
the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the device manager and the exported interfaces and functions see
Interfaces of the Device Management, p. 66.

7.1.10 VciQueryDeviceByHwid
Opens a device or controller with a particular hardware ID.

HRESULT VCIAPI VciQueryDeviceByHwid (
REFGUID rHwid,
IVciDevice** ppDevice);

Parameter
Parameter Dir. Description
rHwid [in] Reference to hardware ID of the controller to be opened.
ppDevice [out] Address of a pointer variable. If run successfully the function saves the pointer to

interface IVciDevice of the VCI device manager. In case of an error the variable
is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Every device or bus controller has a distinct hardware ID, that stays valid after the system is
restarted.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 62 (154)

7.1.11 VciQueryDeviceByClass
Opens a device or controller with a particular device class.

HRESULT VCIAPI VciQueryDeviceByClass (
REFGUID rClass,
UINT32 dwInst,
IVciDevice** ppDevice);

Parameter
Parameter Dir. Description
rClass [in] Reference to class ID of the controller to be opened.
dwInst [in] Number of controller to be opened. If several controllers of the same class are

present, this value determines the number of the controller to be opened in the
device list. Value 0 selects the first controller of the specified class.

ppDevice [out] Address of a pointer variable. If run successfully the function saves the pointer to
interface IVciDevice of the opened device or adapter. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Every bus controller is assigned to a distinct device class. The instance number of this controller
is not fixed, but changes dependent on when or how the controller was activated or generated
by the system. This is to be considered if USB or other external controllers are used, because
these can be plugged in and off during the system is running.

7.1.12 VciCreateFifo
Creates a new FIFO and determines a pointer to one of the interfaces IVciFifo resp.
IVciFifo2, IFifoReader or IFifoWriter.

HRESULT VCIAPI VciCreateFifo (
PVCIID pResid,
UINT16 wCapacity,
UINT16 wElementSize,
REFIID riid,
PVOID* ppv);

Parameter
Parameter Dir. Description
pResid [out] Pointer to variable of type VCIID. If run successfully the VCI-specific individually

unique ID is stored by newly generated FIFO. This ID can be used for further calls
of the function VciAccessFifo to reach additional interfaces of the FIFO.

wCapacity [in] Number of elements in the newly generated FIFO
wElementSize [in] Size of an element in number of bytes
riid [in] ID of the interface to access the component. FIFOs support the interface IDs IID_

IFifoReader, IID_IFifoWriter and IID_IVciFifo resp. IID_
IVciFifo2.

ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid
requested interface. If the FIFO cannot be generated or if the FIFO does not
support the interface specified in riid variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 63 (154)

Remark

FIFOs occupy more than (wCapacity*wElementSize) bytes. The calculated size is always rounded
up to the whole memory sites, with the result that the FIFO eventually contains more element
than requested (for more information about the memory consumption see Communication
Components, p. 12).

7.1.13 VciAccessFifo
Opens an existing FIFO and requests one of the interfaces IVciFifo resp. IVciFifo2,
IFifoReader or IFifoWriter.

HRESULT VCIAPI VciAccessFifo (
REFVCIID rResid,
REFIID riid,
PVOID* ppv);

Parameter
Parameter Dir. Description
rResid [in] Reference to the VCI-specific ID of the FIFO to be opened.
riid [in] ID of the interface to access the component. FIFOs support the interface IDs IID_

IFifoReader, IID_IFifoWriter and IID_IVciFifo resp. IID_
IVciFifo2.

ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid
requested interface. If the interface specified in riid is not supported, the FIFO
cannot be opened or access is not possible, the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The interface IFifoReader resp. IFifoWriter can exclusively be opened once at a certain
time. If the requested interface is already used the call fails. The anew opening of the interface is
not possible until it is released.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 64 (154)

7.2 Interface IUnknown
All components provided by the VCI implement the interface IUnknown specified in the
Component Object Model of Microsoft (MS-COM). The interface provides the function
QueryInterface to request further interfaces of the component, and additionally the
functions AddRef resp. Release to control the lifespan of the component.

7.2.1 QueryInterface
Calls a particular interface of a component.

ULONG QueryInterface (REFIID riid, PVOID *ppv);

Parameter
Parameter Dir. Description
riid [in] Reference to the ID of the interface to access the component.
ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid

requested interface. In case of an error the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

If run successfully the function increments the reference counter of the component
automatically by 1. When the application does not need the interfaces resp. the components
anymore, the pointer returned in ppv must be released with Release.

7.2.2 AddRef
Increments the reference counter of the component by 1.

ULONG AddRef (void);

Return Value

Function returns the current value of the reference counter.

Remark

The function always must be called, if the application stores a copy of the interface pointer. This
ensures that the component exists as long as the last reference to it is released. An interface resp.
the connected component is released by the call of the function Release.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 65 (154)

7.2.3 Release
Decrements the reference count of the component by 1. If the reference count falls to 0, the
component is released.

ULONG Release (void);

Return Value

Function returns the current value of the reference counter.

Remark

After calling the function the pointer to the interface used by the application is not valid
anymore and must not be used anymore. This also applies if the function returns a value lager
than 0, i. e. the component itself is not released by this call.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 66 (154)

7.3 Interfaces of the Device Management
7.3.1 IVciDeviceManager

The interface is used to access the VCI device manager. A pointer to this interface is provided by
the API function VciGetDeviceManager. The ID of the interface is IID_
IVciDeviceManager.

EnumDevices

Creates an object to list all devices registered on VCI.

HRESULT EnumDevices(IVciEnumDevice** ppEnumDevice)

Parameter
Parameter Dir. Description

ppEnumDevice [out] Address of a pointer variable. If run successfully the function saves the pointer to
interface IVciEnumDevice of the device list. In case of an error the variable is
set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

OpenDevice

Opens a device.

HRESULT OpenDevice (
REFVCIID rVciidDev,
IVciDevice** ppDevice)

Parameter
Parameter Dir. Description
rVciidDev [in] Reference to the unique ID of the controller to be opened.
ppDevice [out] Address of a pointer variable. If run successfully the function saves the pointer to

interface IVciDevice of the VCI device manager. In case of an error the variable
is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

ID of device to be opened can be determined with function IVciEnumDevice::Next (see
Listing Available Devices, p. 10).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 67 (154)

7.3.2 IVciEnumDevice
The interfaces serves for listing all devices that are currently registered in the VCI (functionality
see Listing Available Devices, p. 10) The ID of the interface is IID_IVciEnumDevice.

Next

Determines the description of one or more devices in the device list and increments an internal
index, with the result that a subsequent call of the function returns the description to the
respectively next devices.

HRESULT Next (
UINT32 dwNumElem,
PVCIDEVICEINFO paDevInfo,
PUINT32 pdwFetched);

Parameter
Parameter Dir. Description
dwNumElem [in] Number of list elements that are to be determined with this call.
paDevInfo [out] Pointer of array of minimum dwNumElem elements of type VCIDEVICEINFO. If

run successfully the function stores the individual information about the devices in
this memory area.

pdwFetched [out] Pointer to variable in which the function saves the actually determined elements if
ran successfully.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError
VCI_E_NO_MORE_ITEMS No further elements available or end of list is reached.

Remark

In Parameter pdwFetched the function can be applied into the value NULL if in parameter
dwNumElem value 1 is specified.

Skip

Skips a certain number of entries in the device list.

HRESULT Skip (UINT32 dwNumElem);

Parameter
Parameter Dir. Description

dwNumElem [in] Number of elements to be skipped

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function is only useful in static lists, because in static lists the order of the devices is fixed
during the runtime.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 68 (154)

Reset

Resets the internal index to initial state, with the result that a subsequent call of Next returns
again the first element of the list.

HRESULT Reset (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

AssignEvent

Assigns an Event to the device list, that is always set in signalized state when a device is added to
or deleted from the list.

HRESULT AssignEvent (HANDLE hEvent);

Parameter
Parameter Dir. Description

hEvent [in] Handle of event object. Specified handle must originate of Windows function
CreateEvent.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 69 (154)

7.3.3 IVciDevice
The interface provides functions to request general information and to open application specific
components of an adapter. The ID of the interface is IID_IVciDevice.

GetDeviceInfo

Determines general information about a device.

HRESULT GetDeviceInfo (PVCIDEVICEINFO pInfo);

Parameter
Parameter Dir. Description

pInfo [out] Pointer to data block of type VCIDEVICEINFO. If run successfully the function
stores the information about the device in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data returned by this function see VCIDEVICEINFO.

GetDeviceCaps

Determines information about the technical capabilities of a device.

HRESULT GetDeviceCaps (PVCIDEVICECAPS pCaps);

Parameter
Parameter Dir. Description

pCaps [out] Pointer to data block of type VCIDEVICECAPS. If run successfully the function
stores the information about the technical capabilities in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data returned by this function see VCIDEVICECAPS.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 70 (154)

OpenComponent

Opens an application specific component of the adapter.

HRESULT OpenComponent (
REFCLSID rcid,
REFIID riid,
PVOID* ppv)

Parameter
Parameter Dir. Description
rcid [in] Reference to class ID of the component to be opened.

CLSID_VCIBAL: Opens access to Bus Access Layer (BAL).
riid [in] Reference to the ID of the interface to access the component.
ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid

requested interface of the rcid specified component. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For parameters rcid and riid the following combinations are possible:
rcid: CLSID_VCIBAL
riid: IID_IUnknown, IID_IBalObject.
For more information about the BAL and its components see Accessing the Bus Controller, p. 20.
Observe, that the VCI specific GUIDs must be initialized (see Using the VCI Headers, p. 8 for more
information).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 71 (154)

7.4 Interfaces of the Communication Components
7.4.1 Interfaces for FIFOs

IVciFifo

Common interface for all FIFO components. Detailed description of FIFO and functionality see
First In/First Out Memory (FIFO), p. 13. The ID of the interface is IID_IVciFifo.

GetCapacity

Determines the capacity of the FIFO.

HRESULT GetCapacity (PUINT16 pwCapacity);

Parameter
Parameter Dir. Description

pwCapacity [out] Pointer to variable to which the capacity of the FIFO is returned if the function
succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Function returns the number of data elements that can be stored in the FIFO, not the number of
bytes. The size of an individual data element can be determined with the function
GetEntrySize.

GetEntrySize

Determines the size of an individual data element in the FIFO in bytes.

HRESULT GetEntrySize (PUINT16 pwSize);

Parameter
Parameter Dir. Description

pwSize [out] Pointer to variable to which the size of an individual data element in byte is
returned if the function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 72 (154)

GetFreeCount

Determines the current number of free data elements in the FIFO.

HRESULT GetFreeCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the number of free data elements is returned if the
function succeeded. Value informs how many data elements additionally fit into
the FIFO.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

GetFillCount

Determines the current number of occupied data elements in the FIFO.

HRESULT GetFillCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the number of occupied data elements is returned if
the function succeeded. Value informs how many data elements are not yet read.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

GetFillLevel

Determines the filling level of the FIFO in percentage.

HRESULT GetFillLevel (PUINT16 pwLevel);

Parameter
Parameter Dir. Description

pwLevel [out] Pointer to variable to which the current filling level in percentage is returned if the
function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 73 (154)

IVciFifo2

The interface IVciFifo2 expands the interface IVciFifo with additional features. The ID of
the interface is IID_IVciFifo2.

Reset

Deletes the current FIFO content.

HRESULT Reset (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error
VCI_E_ACCESSDENIED An interface is opened.

Remark

The function is only ran successfully if the FIFO is neither accessed reading nor writing during the
function is called. When the function is called neither interface IFifoReader nor
IFifoWriter must be opened.

IFifoReader

The interface is used for the reading access to FIFOs (description see Functionality of the
Receiving FIFO, p. 16). The ID of the interface is IID_IFifoReader.

Lock

Waits until the calling thread has exclusive access to the interface and then locks the access to
the interface for all other threads of the application.

HRESULT Lock (void);

Return Value
Return value Description
VCI_OK —

Remark

Applications that access the interface simultaneously from several threads must synchronize the
access. For that at the beginning of a reading sequence Lock is always called and at the end
Unlock. The functions GetCapacity and GetEntrySize are excluded because the values
returned by this functions are unchangeable. Multiple overlapping calls of Lock and Unlock
are possible. Make sure that after every call of Lock a call of Unlock follows.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 74 (154)

Unlock

Releases the access to the interface that is locked with Lock.

HRESULT Unlock (void);

Return Value
Return value Description
VCI_OK —

Remark

For more information see Lock.

AssignEvent

Assigns an Event to the FIFO which is always set in signalized state if the filling level of the FIFO
exceeds a certain threshold.

HRESULT AssignEvent (HANDLE hEvent);

Parameter
Parameter Dir. Description

hEvent [in] Handle of object. Specified handle must originate of Windows function
CreateEvent.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Exclusively one Event can be assigned to the interface. If the function is multiply called a
previously assigned Event is overwritten. The currently assigned Event can be removed by calling
the function with value NULL in parameter hEvent. The Event is triggered if an element is
assigned to the FIFO and the filling level reaches or exceeds the set threshold. For more
information about the function see Functionality of the Receiving FIFO, p. 16.

SetThreshold

Determines the threshold for the filling level at which the currently assigned Event is signalized.

HRESULT SetThreshold (UINT16 wThreshold);

Parameter
Parameter Dir. Description

wThreshold [in] Threshold at which the currently with AssignEvent assigned Event is signalized.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 75 (154)

Remark

If the value specified in parameter wThreshold exceeds the valid area the function automatically
limits the threshold to the capacity of the FIFO. The currently assigned Event is triggered if a data
element is stored in the FIFO and reaches or exceeds the threshold specified in parameter
wThreshold. For more information see Functionality of the Receiving FIFO, p. 16.

GetThreshold

Determines the specified threshold at which a currently assigned Event is signalized.

HRESULT GetThreshold (PUINT16 pwThreshold);

Parameter
Parameter Dir. Description

pwThreshold [out] Pointer to variable to which the currently assigned threshold is returned if the
function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see SetThreshold.

GetCapacity

Determines the capacity of the FIFO.

HRESULT GetCapacity (PUINT16 pwCapacity);

Parameter
Parameter Dir. Description

pwCapacity [out] Pointer to variable to which the capacity of the FIFO is returned if the function
succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function returns the number of data elements that can be stored in the FIFO, not the
number of bytes. The size of an individual data element can be determined with the function
GetEntrySize.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 76 (154)

GetEntrySize

Determines the size of an individual data element in the FIFO in bytes.

HRESULT GetEntrySize (PUINT16 pwSize);

Parameter
Parameter Dir. Description

pwSize [out] Pointer to variable to which the size of an individual data element is returned if
the function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

GetFillCount

Determines the current number of not yet read resp. valid data elements in the FIFO.

HRESULT GetFillCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the current number of occupied data elements is
returned if the function succeeded. Value informs how many data elements are
not yet read.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

GetFreeCount

Determines the current number of free data elements in the FIFO.

HRESULT GetFreeCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the number of free data elements is returned if the
function succeeded. Value informs how many data elements additionally fit into
the FIFO.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The value that is returned in pwCount informs how many additional elements fit into the FIFO
until it is crowded.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 77 (154)

GetDataEntry

Reads the next valid data element in the FIFO.

HRESULT GetDataEntry (PVOID pvData);

Parameter
Parameter Dir. Description

pvData [out] Pointer to the buffer memory of the data element to be read. If the value NULL is
entered the function removes the next element in the FIFO.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_RXQUEUE_EMPTY No data element in FIFO while calling the function
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function copies the content of the next valid data element to the memory area to which
parameter pvData is pointing. Because of that the memory area must be at least as big as a data
element in the FIFO. The size of an individual data element can be determined with function
GetEntrySize.

AcquireRead

Determines a pointer to the next unread data element in the FIFO and the number of elements
that can be read sequentially from this position onward.

HRESULT AcquireRead (PVOID* ppvData, PUINT16 pwCount);

Parameter
Parameter Dir. Description
ppvData [out] Address of a pointer variable. If run successfully address of first valid element that

can be read is stored.
pwCount [out] If run successfully pointer to variable in which number of valid elements is stored

that can be read from the in ppvData returned address onward.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Invalid parameter
VCI_E_RXQUEUE_EMPTY FIFO contains no more valid elements.

Remark

In ppvData returned address can be used as pointer to an array with pwCount elements. Every
element in the array has the size that is specified in bytes when creating the FIFO. Since the
pointer returned in ppvData points directly to the memory of the FIFO it must be made sure that
no element outside the valid area is read.

In parameter pwCount the value NULL can be specified if the program is only interested in the
next free element. In this case when calling ReleaseRead it is maximally allowed to specify
parameter wCount with 1.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 78 (154)

ReleaseRead

Releases a certain number of data element from the current reading position in the FIFO onward.

HRESULT ReleaseRead (UINT16 wCount);

Parameter
Parameter Dir. Description

wCount [in] Number of data elements in the FIFO to be released

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function updates the reading position in the FIFO corresponding to the number of elements
specified in wCount. The value that is specified in wCount must not exceed the number returned
by AcquireRead but can be 0 if no element is to be released.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 79 (154)

IFifoWriter

The interface is used for the transmitting access to FIFOs (for more information see Functionality
of the Transmitting FIFO, p. 18). The ID of the interface is IID_IFifoWriter.

Lock

Waits until the calling thread has exclusive access to the interface and then locks the access to
the interface for all other threads of the application.

HRESULT Lock (void);

Return Value
Return value Description
VCI_OK —

Remark

Applications that access the interface simultaneously from several threads must synchronize the
access. For that at the beginning of a writing sequence Lock is always called and at the end
Unlock. The functions GetCapacity and GetEntrySize are excluded because the values
returned by this functions are unchangeable. Multiple overlapping calls of Lock and Unlock
are possible. Make sure that after every call of Lock a call of Unlock follows.

Unlock

Releases the access to the interface that was locked with Lock.

HRESULT Unlock (void);

Return Value
Return value Description
VCI_OK —

Remark

For more information see function Lock.

AssignEvent

Assigns an Event to the FIFO which is always set in signalized state if the number of free
elements exceed a certain value or if the filling level is below a certain value.

HRESULT AssignEvent (HANDLE hEvent);

Parameter
Parameter Dir. Description

hEvent [in] Handle of event. Specified handle must originate of Windows API function
CreateEvent.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Exclusively one Event can be assigned to the interface. If the function is multiply called a
previously assigned Event is overwritten. The currently assigned Event can be removed by calling

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 80 (154)

the function with value NULL in parameter hEvent. The Event is triggered if an element is
removed from the FIFO and the specified threshold is reached or exceeded or if the filling level is
below a specified value. For more information see Functionality of the Transmitting FIFO, p. 18.

SetThreshold

Determines the threshold for the filling level at which the currently assigned Event is signalized.

HRESULT SetThreshold (UINT16 wThreshold);

Parameter
Parameter Dir. Description

wThreshold [in] Threshold at which the currently with AssignEvent assigned Event is signalized.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

If the value specified in parameter wThreshold exceeds the valid area the function automatically
limits the threshold to the capacity of the FIFO. The currently assigned Event is triggered if an
element is removed from the FIFO and the number of free entries reaches or exceeds the
threshold specified in parameter wThreshold or if the filling level is below a specified value. For
more information see Functionality of the Receiving FIFO, p. 16.

GetThreshold

Determines the specified threshold at which a currently assigned Event is signalized.

HRESULT GetThreshold (PUINT16 pwThreshold);

Parameter
Parameter Dir. Description

pwThreshold [out] Pointer to variable to which the currently assigned threshold is returned if the
function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see SetThreshold.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 81 (154)

GetCapacity

Determines the capacity of the FIFO.

HRESULT GetCapacity (PUINT16 pwCapacity);

Parameter
Parameter Dir. Description

pwCapacity [out] Pointer to variable to which the capacity of the FIFO is returned if the function
succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function returns the number of data elements that can be stored in the FIFO, not the
number of bytes. The size of an individual data element can be determined with function
GetEntrySize.

GetEntrySize

Determines the size of an individual data element in the FIFO in bytes.

HRESULT GetEntrySize (PUINT16 pwSize);

Parameter
Parameter Dir. Description

pwSize [out] Pointer to variable to which the size of an individual data element is returned if
the function succeeded.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

GetFillCount

Determines the current number of not yet read resp. valid data elements in the FIFO.

HRESULT GetFillCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the current number of occupied data elements is
returned if the function succeeded. Value informs how many data elements are
not yet read.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 82 (154)

GetFreeCount

Determines the current number of free data elements in the FIFO.

HRESULT GetFreeCount (PUINT16 pwCount);

Parameter
Parameter Dir. Description

pwCount [out] Pointer to variable to which the number of free data elements is returned if the
function succeeded. Value informs how many data elements additionally fit into
the FIFO.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The value returned in pwCount informs how many additionally elements fit into the FIFO until it
is crowded.

PutDataEntry

Writes a data element to the FIFO.

HRESULT PutDataEntry (PVOID pvData);

Parameter
Parameter Dir. Description

pvData [in] Pointer to the data element to be written

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_TXQUEUE_FULL No space available in FIFO.
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function copies the content of the memory area to which parameter pvData is pointing to
next valid data element. Because of that the memory area specified in pvData must be at least as
big as a data element in the FIFO. The size of a data element can be determined with the
function GetEntrySize.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 83 (154)

AcquireWrite

Determines a pointer to the next unread data element in the FIFO and the number of elements
that can be addressed linearly from this position onward.

HRESULT AcquireWrite (PVOID* ppvData, PUINT16 pwCount);

Parameter
Parameter Dir. Description
ppvData [out] Address of a pointer variable. If run successfully address of first valid element that

can be addressed is stored.
pwCount [out] If run successfully pointer to variable in which number of valid elements is stored

that can be addressed from the in ppvData returned address onward.

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Invalid parameter
VCI_E_TXQUEUE_FULL FIFO contains no more valid elements.

Remark

In ppvData returned address can be used as pointer to an array with pwCount elements. Every
element in the array has the size that is specified in bytes when creating the FIFO. Since the
pointer that is returned in ppvData points directly to the memory of the FIFO, it must be made
sure that no element outside the valid area is addressed. In parameter pwCount the value NULL
can be specified if the program is only interested in the next free element. In this case when
calling ReleaseRead it is maximally allowed to specify parameter wCount with 1.

ReleaseWrite

Releases a certain number of data element from the current reading position in the FIFO onward.

HRESULT ReleaseWrite (UINT16 wCount);

Parameter
Parameter Dir. Description

wCount [in] Number of data element to be declared valid in the FIFO

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function updates the writing position in the FIFO corresponding to the number of elements
specified in wCount. The value that is specified in wCount must not exceed the number returned
by AcquireWrite but can be 0 if no element is to be declared valid.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 84 (154)

7.5 BAL Specific Interfaces
The following chapters describe the interfaces and functions for the access of the controllers of a
bus adapter. Introducing information see Accessing the Bus Controller, p. 20.

7.5.1 IBalObject
The interface provides functions to determine the features of the BAL and to open bus
controllers. The ID of the interface is IID_IBalObject.

GetFeatures

Determines the functions of the Bus Access Layer (BAL) of the bus adapter.

HRESULT GetFeatures (PBALFEATURES pBalFeatures);

Parameter
Parameter Dir. Description

pBalFeatures [out] Pointer to data block of type BALFEATURES. If run successfully the function
stores the features of the BAL in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure BALFEATURES.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 85 (154)

OpenSocket

Opens a bus controller and request an interface from it.

HRESULT OpenSocket (UINT32 dwBusNo, REFIID riid, PVOID* ppv);

Parameter
Parameter Dir. Description
dwBusNo [in] Number of the bus controller to be opened. Value 0 selects the first bus controller,

value 1 the second, etc.
riid [in] Reference to the ID of the interface to access the bus component.
ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid

requested interface. In case of an error the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

If run successfully the function increments the reference counter of the opened bus controller
automatically by 1. When the application do not need the interfaces resp. the bus controller any
more, the pointer returned in ppv must be releases with Release. For information about
number and type of available bus controllers and possible values for dwBusNo see description of
the data structure BALFEATURES.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 86 (154)

7.6 CAN Specific Interfaces
7.6.1 ICanSocket

The interface contains functions to request for features and to create message channels for a
CAN controller. The ID of the interface is IID_ICanSocket.

GetSocketInfo

Determines general information about the bus controller.

HRESULT GetSocketInfo (PBALSOCKETINFO pSocketInfo);

Parameter
Parameter Dir. Description

pSocketInfo [out] Pointer to memory area of type BALSOCKETINFO. If run successfully the
function stores the information about the bus controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure BALSOCKETINFO.

GetCapabilities

Determines the features of the CAN controller.

HRESULT GetCapabilities (PCANCAPABILITIES pCanCaps);

Parameter
Parameter Dir. Description

pCanCaps [out] Pointer to memory area of type CANCAPABILITIES. If run successfully the
function stores the features of the CAN controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure CANCAPABILITIES.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 87 (154)

GetLineStatus

Determines the current settings and the current state of the CAN Controller.

HRESULT GetLineStatus (PCANLINESTATUS pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type CANLINESTATUS. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure CANLINESTATUS.

CreateChannel

Opens resp. creates a message channel for the CAN controller.

HRESULT CreateChannel (
BOOL fExclusive,
PCANCHANNEL* ppChannel);

Parameter
Parameter Dir. Description
fExclusive [in] Determines if the controller is exclusively used for the channel to be opened. If

the value TRUE is specified no further message channels can be opened after the
function ran successfully until the newly generated channel is released again. If
value FALSE is specified multiple message channels for the CAN controller can be
opened.

ppChannel [out] Address of a variable to which a pointer to the interface ICanChannel is
assigned by the newly generated message channel if ran successfully. In case of an
error the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The program that calls the function first with the value TRUE in parameter fExclusive exclusively
controls the message transfer on the CAN bus. If the message channel is not required any more
the pointer returned in ppChannel must be released by calling the function Release. For
general information about message channels see Message Channels, p. 23.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 88 (154)

7.6.2 ICanSocket2
The interface contains functions to request for the features and to create message channels for a
expanded CAN controller. The ID of the interface is IID_ICanSocket2.

GetSocketInfo

Determines general information about the bus controller.

HRESULT GetSocketInfo (PBALSOCKETINFO pSocketInfo);

Parameter
Parameter Dir. Description

pSocketInfo [out] Pointer to memory area of type BALSOCKETINFO. If run successfully the
function stores the information about the bus controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure BALSOCKETINFO.

GetCapabilities

Determines the features of the CAN controller.

HRESULT GetCapabilities (PCANCAPABILITIES pCanCaps);

Parameter
Parameter Dir. Description

pCanCaps [out] Pointer to memory area of type CANCAPABILITIES2. If run successfully the
function stores the features of the CAN controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure CANCAPABILITIES2.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 89 (154)

GetLineStatus

Determines the current settings and the current state of the CAN Controller.

HRESULT GetLineStatus (PCANLINESTATUS2 pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type CANLINESTATUS2. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure CANLINESTATUS2.

CreateChannel

Opens resp. creates a message channel for the CAN controller.

HRESULT CreateChannel (
BOOL fExclusive,
PCANCHANNEL2* ppChannel);

Parameter
Parameter Dir. Description
fExclusive [in] Determines if the controller is exclusively used for the channel to be opened. If

the value TRUE is specified no further message channels can be opened after the
function ran successfully until the newly generated channel is released again. If
value FALSE is specified multiple message channels for the CAN controller can be
opened.

ppChannel [out] Address of a variable to which a pointer to the interface ICanChannel2 is
assigned by the newly generated message channel if ran successfully. In case of an
error the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The program that calls the function first with the value TRUE in parameter fExclusive exclusively
controls the message transfer on the CAN bus. If the message channel is not required any more
the pointer that is returned in ppChannel must be released by calling the function Release. For
general information about message channels see Message Channels, p. 23.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 90 (154)

7.6.3 ICanControl
Basic information to the functionality of the component see Control Unit, p. 33. The ID of the
interface is IID_ICanControl.

DetectBaud

Determines the current bit rate of the CAN bus connected to the adapter.

HRESULT DetectBaud (
UINT16 wTimeoutMs,
PCANBTRTABLE pBtrTable);

Parameter
Parameter Dir. Description
wTimeoutMs [in] Maximum waiting time in milliseconds between two receive messages on the bus.
pBtrTable [in/out] Pointer to a initialized structure of type CANBTRTABLE with predefined set of

bus timing values to be tested.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError
VCI_E_NOT_IMPLEMENTED Function not supported by device
VCI_E_TIMEOUT No communication on the bus during the time specified in wTimeoutMs

Remark

If run successfully, field bIndex of structure CANBTRTABLE contains the table index of the found
bus timing values. The values at the respective positions in the tables abBtr0 and abBtr1 can
then be used to initialize the CAN controller with InitLine.

Before calling it is possible to specify in bIndex additional parameters about the operating mode
that is used by the bit rate to detect. Valid is either CAN_OPMODE_LOWSPEED or 0, if no low
speed coupling is desired. The function can be called in undefined state or after a reset of the
controller. For more information about the automatic detection of the bit rate see Determine the
Bit Rate Used in the Network, p. 40.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 91 (154)

InitLine

Specifies the operating mode and the bit rate of the CAN controller.

HRESULT InitLine (PCANINITLINE pInitParam);

Parameter
Parameter Dir. Description

pInitParam [in] Pointer to initialized structure of type CANINITLINE. Field bOpMode determines
the operating mode, Fields bBtReg0 and bBtReg1 the bit rate of the CAN controller.
For more information about the fields see description of the data structure
CANINITLINE.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function resets the controller hardware like the function ResetLine. The controller is
newly initialized with the specified values. For values for the bus timing register BTR0 and BTR1
resp. the therefore defined constants for the CiA resp. CANopen specified bit rates and more
information about setting the bit rate see Specifying the Bit Rate, p. 35.

ResetLine

Resets the CAN controller and the message filters of the control unit to the initial state.

HRESULT ResetLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Stopping (resp. Reset) the Controller , p. 34.

StartLine

Starts the CAN controller.

HRESULT StartLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Control Unit, p. 33.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 92 (154)

StopLine

Stops the CAN controller.

HRESULT StopLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Unlike ResetLine the specified message filters are not modified when the controller is
stopped. For more information see Control Unit, p. 33.

GetLineStatus

Determines the current settings and the current state of the CAN Controller.

HRESULT GetLineStatus (PCANLINESTATUS pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type CANLINESTATUS. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can always be called, even before the first call of one of the functions InitLine
or DetectBaud. For more information about the data that are returned by this function see
description of the data structure CANLINESTATUS.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 93 (154)

SetAccFilter

Specifies an acceptance filter of the CAN controller.

HRESULT SetAccFilter (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be accepted including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not used for the comparison. But if it has the value 1 it
is relevant for the comparison.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

AddFilterIds

Assigns one or more CAN message IDs (CAN-ID) in the 11 or 29 bit filter list of the CAN controller.

HRESULT AddFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be registered including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. But if it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 94 (154)

RemFilterIds

Removes one or more CAN message IDs (CAN-ID) from the 11 or 29 bit filter list of the CAN
controller.

HRESULT RemFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit samples of the CAN identifiers to be removed including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. But if it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 95 (154)

7.6.4 ICanControl2
Basic information to the functionality of the component see Control Unit, p. 33. The ID of the
interface is IID_ICanControl2.

DetectBaud

Determines the current bit rate of the CAN bus connected to the adapter.

HRESULT DetectBaud (
UINT8 bOpMode
UINT8 bExMode
UINT16 wTimeoutMs,
PCANBTPTABLE pBtpTable);

Parameter
Parameter Dir. Description
bOpMode [in] Operating mode of the controller used for detection.

CAN_OPMODE_LOWSPEED: CAN controller uses low speed bus coupling.
bExMode [in] Extended operating mode of the controller used for detection. If supported by the

controller, a logical combination of one or more of the following constants can be
specified:
CAN_EXMODE_FASTDATA: Allows higher bit rates for the data field
CAN_EXMODE_NONISO: Use of non-ISO-conform message frames. This option is
exclusively available with older CAN FD controller with the feature CAN_
FEATURE_NONISOFRM.
If the value CAN_EXMODE_DISABLED is specified there is no detection of the
fast bit rates. The value also must be specified with all other controllers that do
not support extended CAN FD operating mode. See description of field
dwFeatures of structure CANCAPABILITIES2.

wTimeoutMs [in] Maximum waiting time in milliseconds between two receive messages on the bus.
pBtpTable [in/out] Pointer to a initialized structure of type CANBTPTABLE with preset bus timing

values to be tested.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError
VCI_E_NOT_IMPLEMENTED Function not supported by device
VCI_E_TIMEOUT No communication on the bus during the specified time

Remark

If run successfully, field bIndex of structure CANBTPTABLE contains the table index of the found
bus timing values. The values at the respective positions in the table can then be used to
initialize the CAN controller with InitLine. The function can be called in undefined state or
after a reset of the controller. For more information about the automatic detection of the bit
rate see Determine the Bit Rate Used in the Network, p. 40.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 96 (154)

InitLine

Specifies the operating mode and bit rate of the CAN controller and the default and reset values
of the operating mode of the message filters.

HRESULT InitLine (PCANINITLINE2 pInitParam);

Parameter
Parameter Dir. Description

pInitParam [in] Pointer to structure of type CANINITLINE2 with the parameters required for
configuration of operating mode, bit rate and message filters. For more
information about the fields see description of the data structure
CANINITLINE2.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function resets the controller hardware like the function ResetLine. The controller is
initialized with specified values. For more information about setting the bit rate see Specifying
the Bit Rate, p. 35.

ResetLine

Resets the CAN controller and the message filters of the control unit to the initial state.

HRESULT ResetLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Stopping (resp. Reset) the Controller , p. 34.

StartLine

Starts the CAN controller.

HRESULT StartLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Starting the Controller, p. 34.

StopLine

Stops the CAN controller.

HRESULT StopLine (void);

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 97 (154)

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

Unlike ResetLine the specified message filters are not modified when the controller is
stopped. For more information see Control Unit, p. 33.

GetLineStatus

Determines the current settings and the current state of the CAN Controller.

HRESULT GetLineStatus (PCANLINESTATUS2 pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type CANLINESTATUS2. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can always be called, even before the first call of one of the functions InitLine
or DetectBaud. For more information about the data that are returned by this function see
description of the data structure CANLINESTATUS2.

GetFilterMode

Determines the current operating mode of the message filter of the control unit.

HRESULT GetFilterMode (
UINT8 bSelect,
PUINT8 pbMode);

Parameter
Parameter Dir. Description
bSelect [in] Selecting the filter. With CAN_FILTER_STD the 11 bit, with CAN_FILTER_EXT

the 29 bit filter is selected.
pbMode [out] Pointer to variable of type UINT8. If run successfully the value of the currently

specified operating mode is assigned. For more information about the returned
value see description of function SetFilterMode.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of functionality of message filter see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 98 (154)

SetFilterMode

Specifies the operating mode of the message filter of the control unit.

HRESULT SetFilterMode (
UINT8 bSelect,
UINT8 bNewMode,
PUINT8 pbPrevMode);

Parameter
Parameter Dir. Description
bSelect [in] Selecting the filter. With CAN_FILTER_STD the 11 bit, with CAN_FILTER_EXT

the 29 bit filter is selected.
bNewMode [in] Parameter determines new operating mode for selected filter. One of the

following constants can be specified:
CAN_FILTER_LOCK: Filter blocks all messages of type CAN_MSGTYPE_DATA,
independent of the ID. The other message types like for example CAN_
MSGTYPE_INFO are not concerned and can always pass.
CAN_FILTER_PASS: Filter is completely opened and all data messages can pass.
CAN_FILTER_INCL: All data messages of type CAN_MSGTYPE_DATA with an
ID either released in the acceptance filter or registered in the filter list can pass
the filter (e. i. all registered IDs). Other message types are not concerned and can
always pass.
CAN_FILTER_EXCL: All data messages of type CAN_MSGTYPE_DATA with an
ID either released in the acceptance filter or registered in the filter list are blocked
by the filter (e. i. all registered IDs). Other message types are not concerned and
can always pass.

pbPrevMode [out] Pointer to variable of type UINT8. If run successfully the value of the last
specified operating mode is assigned. The parameter is optional and can be set to
NULL if the value is not required.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of FIFO and functionality see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 99 (154)

SetAccFilter

Specifies an acceptance filter of the CAN controller.

HRESULT SetAccFilter (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be accepted including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not used for the comparison. But if it has the value 1 it
is relevant for the comparison.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

AddFilterIds

Assigns one or more CAN message IDs (CAN-ID) in the 11 or 29 bit filter list of the control unit.

HRESULT AddFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the identifiers to be registered including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. But if it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 100 (154)

RemFilterIds

Removes one or more CAN message IDs (CAN-ID) from the 11 or 29 bit filter list of the control
unit.

HRESULT RemFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the identifiers to be removed including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. But if it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 101 (154)

7.6.5 ICanChannel
The interface provides functions to create a message channel. Basic information to the
functionality of the component see Message Channels, p. 23. The ID of the interface is IID_
ICanChannel.

Initialize

Initializes the receiving and the transmitting FIFO of the message channel.

HRESULT Initialize (UINT16 wRxFifoSize, UINT16 wTxFifoSize);

Parameter
Parameter Dir. Description
wRxFifoSize [in] Size of receiving FIFO in number of CAN messages
wTxFifoSize [in] Size of transmitting FIFO in number of CAN messages

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Value in parameter wRxFifoSize must be higher than 0.
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The specified values determine exclusively the lower limit for the size of the respective FIFO. The
actual size is eventually bigger as specified, because the memory for the FIFOs is reserved page
by page and the pages are always used completely. For more information see First In/First Out
Memory (FIFO), p. 13. In parameter wRxFifoSize a value higher than 0 must be set. Otherwise the
function returns an error code. If no transmitting FIFO is needed, for example if the controller is
run in listen-only mode, value 0 can be set in wTxFifoSize.

Activate

Activates the message channel and connects the receiving and the transmitting FIFO to the CAN
controller.

HRESULT Activate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

By default the message channel is deactivated and disconnected from the bus after it is created
resp. initialized. To connect the channel to the bus, the bus must be activated. For more
information see Message Channels, p. 23.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 102 (154)

Deactivate

Deactivates the message channel and disconnects the receiving and the transmitting FIFO from
the CAN controller.

HRESULT Deactivate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

After deactivating the channel no more messages can be transmitted or received.

GetReader

Determines a pointer to the interface IFifoReader of the receiving FIFO of the message
channel.

HRESULT GetReader (IFifoReader** ppReader);

Parameter
Parameter Dir. Description
ppReader [out] Address of a variable to which a pointer to the interface IFifoReader is

assigned by the receiving FIFO if ran successfully. In case of an error the variable is
set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function succeeds if the channel is initialized with the function Initialize. If the pointer
returned by the function is not required any more the pointer must be released with Release.

GetWriter

Determines a pointer to the interface IFifoWriter of the transmitting FIFO of the message
channel.

HRESULT GetWriter (IFifoWriter** ppWriter);

Parameter
Parameter Dir. Description

ppWriter [out] Address of a variable to which a pointer to the interface IFifoWriter is
assigned by the transmitting FIFO if ran successfully. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 103 (154)

Remark

The function succeeds if the channel is initialized with the function Initialize. If the pointer
returned by the function is not required any more the pointer must be released with Release.

GetStatus

Determines the current state of the message channel and the CAN controller that is connected to
the message channel.

HRESULT GetStatus (PCANCHANSTATUS pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to memory area of type CANCHANSTATUS. If run successfully the
function saves the current settings and the current state of the message channel
in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can always be called, even before the first call of one of the function Initialize.
For more information about the data returned by this function see description of the structure
CANCHANSTATUS.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 104 (154)

7.6.6 ICanChannel2
The interface provides functions to create a message channel. Basic information to the
functionality of the component see Message Channels, p. 23. The ID of the interface is IID_
ICanChannel2.

Initialize

Initializes the receiving and the transmitting FIFO of the message channel.

HRESULT Initialize (
UINT32 dwRxFifoSize,
UINT32 dwTxFifoSize
UINT32 dwFilterSize
UINT8 bFilterMode);

Parameter
Parameter Dir. Description
dwRxFifoSize [in] Size of receiving FIFO in number of CAN messages
dwTxFifoSize [in] Size of transmitting FIFO in number of CAN messages
dwFilterSize [in] Number of 29 bit message IDs supported by the filter list. 11 bit filter list supports

all 2048 possible message IDs. If value 0 is specified, no filter list is created. In this
case exact filtering is not possible. Filtering with acceptance filter is not affected
by that.

bFilterMode [in] Default value for operating mode of message filter. One of the following constants
can be specified:
CAN_FILTER_LOCK: Filter blocks all messages of type CAN_MSGTYPE_DATA,
independent of the ID. The other message types like for example CAN_
MSGTYPE_INFO are not concerned and can always pass.
CAN_FILTER_PASS: Filter is completely opened and all messages can pass.
CAN_FILTER_INCL: All data messages of type CAN_MSGTYPE_DATA with an
ID either released in the acceptance filter or registered in the filter list can pass
the filter (e. i. all registered IDs). Other message types are not concerned and can
always pass.
CAN_FILTER_EXCL: All data messages with an ID either released in the
acceptance filter or registered in the filter list are blocked by the filter (e. i. all
registered IDs). Other message types are not concerned and can always pass.
The filter operating mode can be combined with the constant CAN_FILTER_
SRRA. The message channel then receives all self reception messages that are
transmitted to the controller by other channels. If CAN_FILTER_SRRA is not
specified the channel exclusively receives its own self reception messages.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError
VCI_E_INVALIDARG Value in parameter dwRxFifoSize must be higher than 0.

Remark

The values that are specified in dwRxSize resp. dwTxSize determine exclusively the lower limit for
the size of the respective FIFO. The actual size is eventually bigger as specified, because the
memory for the FIFOs is reserved page by page and the pages are always used completely. For
more information see First In/First Out Memory (FIFO), p. 13. In parameter dwRxFifoSize a value
higher than 0 must be set. Otherwise the function returns an error code. If no transmitting FIFO
is needed, for example if the controller is run in listen-only mode, value 0 can be set in
dwTxFifoSize.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 105 (154)

Activate

Activates the message channel and connects the receiving and the transmitting FIFO to the CAN
controller.

HRESULT Activate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

By default the message channel is deactivated and disconnected from the bus after it is created
resp. initialized. To connect the channel to the bus, the bus must be activated. For more
information see Message Channels, p. 23.

Deactivate

Deactivates the message channel and disconnects the receiving and the transmitting FIFO from
the CAN controller.

HRESULT Deactivate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

After deactivating the channel no more messages can be transmitted or received.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 106 (154)

GetReader

Determines a pointer to the interface IFifoReader of the receiving FIFO of the message
channel.

HRESULT GetReader (IFifoReader** ppReader);

Parameter
Parameter Dir. Description

ppReader [out] Address of a variable to which a pointer to the interface IFifoReader is
assigned by the receiving FIFO if ran successfully. In case of an error the variable is
set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function succeeds if the channel is initialized with the function Initialize. If the pointer
that is returned by the function is not required any more the pointer must be released with
Release.

GetWriter

Determines a pointer to the interface IFifoWriter of the transmitting FIFO of the message
channel.

HRESULT GetWriter (IFifoWriter** ppWriter);

Parameter
Parameter Dir. Description

ppWriter [out] Address of a variable to which a pointer to the interface IFifoWriter is
assigned by the transmitting FIFO if ran successfully. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function succeeds if the channel is initialized with the function Initialize. If the pointer
that is returned by the function is not required any more the pointer must be released with
Release.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 107 (154)

GetStatus

Determines the current state of the message channel and the CAN controller that is connected to
the message channel.

HRESULT GetStatus (PCANCHANSTATUS2 pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to memory area of type CANCHANSTATUS2. If run successfully the
function saves the current settings and the current state of the message channel
in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can always be called, even before the first call of one of the function Initialize.
For more information about the data returned by this function see description of the structure
CANCHANSTATUS2.

GetControl

Opens the control unit of the controller that is connected to the message channel.

HRESULT GetControl (PCANCONTROL2* ppCanCtrl);

Parameter
Parameter Dir. Description

ppCanCtrl [out] Address of a variable to which a pointer to the interface ICanControl2 is
assigned by the opened control unit if run successfully. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The control unit of a controller can exclusively be opened once at a certain time. If the control
unit is not required any more the pointer that is returned in ppCanCtrl must be released by
calling the function Release.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 108 (154)

GetFilterMode

Determines the current operating mode of the message channel.

HRESULT GetFilterMode (
UINT8 bSelect,
PUINT8 pbMode);

Parameter
Parameter Dir. Description
bSelect [in] Selecting the filter. With CAN_FILTER_STD the 11 bit, with CAN_FILTER_EXT

the 29 bit filter is selected.
pbMode [out] Pointer to variable of type UINT8. If run successfully the value of the currently

specified operating mode is assigned. For more information about the returned
value see description of function SetFilterMode.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of functionality of message filter see Message Filter, p. 42.

SetFilterMode

Determines the operating mode of the message channel.

HRESULT SetFilterMode (
UINT8 bSelect,
UINT8 bNewMode,
PUINT8 pbPrevMode);

Parameter
Parameter Dir. Description
bSelect [in] Selecting the filter. With value CAN_FILTER_STD the 11 bit and with value

CAN_FILTER_EXT the 29 bit filter is selected.
bNewMode [in] Parameter determines new operating mode for selected filter. One of the

following constants can be specified:
CAN_FILTER_LOCK: Filter blocks all messages of type CAN_MSGTYPE_DATA,
independent of the ID. The other message types like for example CAN_
MSGTYPE_INFO are not concerned and can always pass.
CAN_FILTER_PASS: Filter is completely opened and all messages can pass.
CAN_FILTER_INCL: All data messages of type CAN_MSGTYPE_DATA with an
ID either released in the acceptance filter or registered in the filter list can pass
the filter (e. i. all registered IDs). Other message types are not concerned and can
always pass.
CAN_FILTER_EXCL: All data messages of type CAN_MSGTYPE_DATA with an
ID either released in the acceptance filter or registered in the filter list are blocked
by the filter (e. i. all registered IDs). Other message types are not concerned and
can always pass.

pbPrevMode [out] Pointer to variable of type UINT8. If run successfully the value of the last
specified operating mode is assigned. The parameter is optional and can be set to
NULL if the value is not required.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 109 (154)

Remark

For detailed description of functionality of message filter see Message Filter, p. 42.

SetAccFilter

Specifies the 11 or the 29 bit acceptance filter of the CAN message channel.

HRESULT SetAccFilter (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be accepted including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not used for the comparison. But if it has the value 1 it
is relevant for the comparison.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 110 (154)

AddFilterIds

Assigns one or more CAN message IDs (CAN-ID) in the 11 or 29 bit filter list of the message list.

HRESULT AddFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be registered including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. If it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

RemFilterIds

Removes one or more CAN message IDs (CAN-ID) from the 11 or 29 bit filter list of the message
channel.

HRESULT RemFilterIds (
UINT8 bSelect,
UINT32 dwCode,
UINT32 dwMask);

Parameter
Parameter Dir. Description
bSelect [in] Selects the acceptance filter. With CAN_FILTER_STD the 11 bit, with CAN_

FILTER_EXT the 29 bit filter is selected.
dwCode [in] Bit sample of the CAN identifiers to be removed including RTR bit.
dwMask [in] Bit samples of the relevant bits in dwCode. If a bit in dwMask has the value 0 the

correlating bit in dwCode is not considered. If it has the value 1 it is relevant.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For detailed description of the functionality of the filter and the values for the parameter
dwCode and dwMask see Message Filter, p. 42.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 111 (154)

7.6.7 ICanScheduler
The interface provides functions to create, start and stop the cyclic transmitting list of a CAN
controller. Basic information to the functionality of the component see Cyclic Transmitting List, p.
46. The ID of the interface is IID_ICanScheduler.

Resume

Starts the transmitting task of the cyclic transmitting list and therefore the transfer of all
currently registered transmitting objects.

HRESULT Resume (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can be used to start all registered transmitting objects simultaneously. Before
calling the function all transmitting objects must be set in a started state with the function
StartMessage. A subsequent call of this function then guarantees a simultaneous start of all
registered transmitting objects.

Suspend

Stops the transmitting task of the cyclic transmitting list and therefore the transfer of all
currently registered transmitting objects.

HRESULT Suspend (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function stops all transmitting objects simultaneously.

Reset

Stops the transmitting task and removes all transmitting objects from the cyclic transmitting list.

HRESULT Reset (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 112 (154)

GetStatus

Determines the current state of the transmitting task and of all registered transmitting objects of
a cyclic transmitting list.

HRESULT GetStatus (PCANSCHEDULERSTATUS pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to structure of type CANSCHEDULERSTATUS. If run successfully the
function saves the current settings and the current state of all cyclic transmitting
objects in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function returns in the array CANSCHEDULERSTATUS.abMsgStat the state of all
transmitting objects. The list index returned by function AddMessage is used to request the
state of a transmitting object, this means the array element abMsgStat[Index] contains the
state of the transmitting object of the specified index. For more information about the data that
are returned by this function see description of the data structure CANSCHEDULERSTATUS.

AddMessage

Adds a new transmitting object to the cyclic transmitting list.

HRESULT AddMessage (
PCANCYCLICTXMSG pMessage,
PUINT32 pdwIndex);

Parameter
Parameter Dir. Description
pMessage [in] Pointer to initialized structure of type CANCYCLICTXMSG with the cyclic

transmitting object.
pdwIndex [out] Pointer to variable of type UINT32. If successfully executed, the function returns

the list index of the newly added transmitting object of this variable. In case of an
error the variable is set to 0xFFFFFFFF. This index is required for all further
callings of functions.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The cyclic transmitting of the newly added transmitting object starts after the successful calling
of the function StartMessage. The transmitting list must be simultaneously active (see
Resume).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 113 (154)

RemMessage

Stops the processing of a transmitting object and removes it from the cyclic transmitting list.

HRESULT RemMessage (UINT32 dwIndex);

Parameter
Parameter Dir. Description

dwIndex [in] List index of the transmitting object to be removed. The list index must originate
from an earlier call of the function AddMessage.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

After calling the function the list index specified in dwIndex is invalid and must not be used any
more.

StartMessage

Starts the processing of a transmitting object of the cyclic transmitting list.

HRESULT StartMessage (UINT32 dwIndex, UINT16 dwCount);

Parameter
Parameter Dir. Description
dwIndex [in] List index of the transmitting object to be started. The list index must originate

from an earlier call of the function AddMessage.
dwCount [in] Number of cyclic transmitting repetitions. With value 0 the transmitting is

repeated endlessly. The specified value must be in between 0 and 65535.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The cyclic transmitting exclusively starts if the transmitting task is active when calling the
function. If the transmitting task is inactive the transmitting is delayed until the next calling of
function Resume.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 114 (154)

StopMessage

Stops the processing of a transmitting object of the cyclic transmitting list.

HRESULT StopMessage (UINT32 dwIndex);

Parameter
Parameter Dir. Description

dwIndex [in] List index of the transmitting object to be stopped. The list index must originate
from an earlier call of the function AddMessage.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 115 (154)

7.6.8 ICanScheduler2
The interface provides functions to create, start and stop the cyclic transmitting list of an
extended CAN controller. Basic information to the functionality of the component see Cyclic
Transmitting List, p. 46. The ID of the interface is IID_ICanScheduler.

Resume

Starts the transmitting task of the cyclic transmitting list and therefore the transfer of all
currently registered transmitting objects.

HRESULT Resume (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can be used to start all registered transmitting objects simultaneously. Before
calling the function all transmitting objects must be set in a started state with the function
StartMessage. A subsequent call of this function then guarantees a simultaneous start of all
registered transmitting objects.

Suspend

Stops the transmitting task of the cyclic transmitting list and therefore the transfer of all
currently registered transmitting objects.

HRESULT Suspend (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function stops all transmitting objects simultaneously.

Reset

Stops the transmitting task and removes all transmitting objects from the cyclic transmitting list.

HRESULT Reset (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 116 (154)

GetStatus

Determines the current state of the transmitting task and of all registered transmitting objects of
a cyclic transmitting list.

HRESULT GetStatus (PCANSCHEDULERSTATUS2 pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to structure of type CANSCHEDULERSTATUS2. If run successfully the
function saves the current settings and the current state of all cyclic transmitting
objects in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function returns in the array CANSCHEDULERSTATUS2.abMsgStat the state of all
transmitting objects. The list index returned by function AddMessage is used to request the
state of a transmitting object, this means the array element abMsgStat[Index] contains the
state of the transmitting object of the specified index. For more information about the data that
are returned by this function see description of the data structure CANSCHEDULERSTATUS2.

AddMessage

Adds a new transmitting object to the cyclic transmitting list.

HRESULT AddMessage (
PCANCYCLICTXMSG2 pMessage,
PUINT32 pdwIndex);

Parameter
Parameter Dir. Description
pMessage [in] Pointer to initialized structure of type CANCYCLICTXMSG2 with the cyclic

transmitting object.
pdwIndex [out] Pointer to variable of type UINT32. If successfully executed, the function returns

the list index of the newly added transmitting object of this variable. In case of an
error the variable is set to 0xFFFFFFFF. This index is required for all further
callings of functions.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The cyclic transmitting of the newly added transmitting object starts after the successful calling
of the function StartMessage. The transmitting list must be simultaneously active (see
Resume).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 117 (154)

RemMessage

Stops the processing of a transmitting object and removes it from the cyclic transmitting list.

HRESULT RemMessage (UINT32 dwIndex);

Parameter
Parameter Dir. Description

dwIndex [in] List index of the transmitting object to be removed. The list index must originate
from an earlier call of the function AddMessage.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

After calling the function the list index that is specified in dwIndex is invalid and must not be
used any more.

StartMessage

Starts the processing of a transmitting object of the cyclic transmitting list.

HRESULT StartMessage (UINT32 dwIndex, UINT16 dwCount);

Parameter
Parameter Dir. Description
dwIndex [in] List index of the transmitting object to be started. The list index must originate

from an earlier call of the function AddMessage.
dwCount [in] Number of cyclic transmitting repetitions. With value 0 the transmitting is

repeated endlessly. The specified value must be in between 0 and 65535.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The cyclic transmitting exclusively starts if the transmitting task is active when calling the
function. If the transmitting task is inactive the transmitting is delayed until the next calling of
function Resume.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 118 (154)

StopMessage

Stops the processing of a transmitting object of the cyclic transmitting list.

HRESULT StopMessage (UINT32 dwIndex);

Parameter
Parameter Dir. Description

dwIndex [in] List index of the transmitting object to be stopped. The list index must originate
from an earlier call of the function AddMessage.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 119 (154)

7.7 LIN Specific Interface
7.7.1 ILinSocket

The interface contains functions to request for the features and to create message monitors for a
LIN controller. The ID of the interface is IID_ILinSocket.

GetSocketInfo

Determines general information about the bus controller.

HRESULT GetSocketInfo (PBALSOCKETINFO pSocketInfo);

Parameter
Parameter Dir. Description

pSocketInfo [out] Pointer to structure of type BALSOCKETINFO. If run successfully the function
stores the information about the bus controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure BALSOCKETINFO.

GetCapabilities

Determines the features of the LIN controller.

HRESULT GetCapabilities (PLINCAPABILITIES pLinCaps);

Parameter
Parameter Dir. Description

pLinCaps [out] Pointer to structure of type LINCAPABILITIES. If run successfully the function
stores the features of the LIN controller in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure LINCAPABILITIES.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 120 (154)

GetLineStatus

Determines the current settings and the current state of the LIN Controller.

HRESULT GetLineStatus (PLINLINESTATUS pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type LINLINESTATUS. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned by this function see description of the
data structure LINLINESTATUS.

CreateMonitor

Creates the message monitor for the LIN controller.

HRESULT CreateMonitor (
BOOL fExclusive,
PLINMONITOR* ppMonitor);

Parameter
Parameter Dir. Description
fExclusive [in] Determines if the controller is used exclusively for the newly created monitor. If

value TRUE is specified no further message monitors can be created after the
function ran successfully until the newly generated monitor is released again. If
value FALSE is specified as many message monitors as desired can be created for
the LIN controller.

ppMonitor [out] Address of a variable to which a pointer to the interface ILinMonitor is
assigned by the newly created monitor if run successfully. In case of an error the
variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Message Monitors, p. 50.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 121 (154)

7.7.2 ILinControl
The interface provides functions to configure and control a LIN controller. Basic information
about functionality of component see Control Unit, p. 53. The ID of the interface is IID_
ILinControl.

InitLine

Specifies the operating mode and the bit rate of the LIN controller.

HRESULT InitLine (PLININITLINE pInitParam);

Parameter
Parameter Dir. Description

pInitParam [in] Pointer to initialized structure of type LININITLINE. The field bOpMode
determines the operating mode and the field wBitrate the bit rate of the LIN
controller. For more information about the fields see description of the data
structure LININITLINE.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function internally resets the controller hardware corresponding to the function
ResetLine and initializes the LIN controller with the values specified in pInitParam.

ResetLine

Resets the LIN controller to initial state.

HRESULT ResetLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Control Unit, p. 53.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 122 (154)

StartLine

Starts the LIN controller.

HRESULT StartLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

A call of the function is exclusively successful if the LIN controller is configured with the function
InitLine. After the function is successful run the LIN controller is connected to the bus
(online). Incoming messages are forwarded to all active message monitors resp. transmit
messages are transmitted to the bus. For more information see Message Monitors, p. 50.

StopLine

Stops the LIN controller.

HRESULT StopLine (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information see Message Monitors, p. 50.

WriteMessage

Transmits the specified message either directly to the controller that is connected to the LIN bus
or assigns the message to the response table of the controller.

HRESULT WriteMessage (BOOL fSend, PLINMSG pLinMsg);

Parameter
Parameter Dir. Description
fSend [in] Determines if a message is directly transmitted to the bus or if it is assigned to the

response table of the controller. With TRUE the message is transmitted directly,
with FALSE the message is assigned to the response table.

pLinMsg [in] Pointer to initialized structure of type LINMSG with the LIN message to be
transmitted.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 123 (154)

GetLineStatus

Determines the current settings and the current state of the LIN Controller.

HRESULT GetLineStatus (PLINLINESTATUS pLineStatus);

Parameter
Parameter Dir. Description

pLineStatus [out] Pointer to memory area of type LINLINESTATUS. If run successfully the
function saves the current settings and the current state of the controller in this
memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

For more information about the data that are returned see description of the data structure
LINLINESTATUS.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 124 (154)

7.7.3 ILinMonitor
The interface provides functions to create a message monitor. For more information about the
functionality of the component see Message Monitors, p. 50. The ID of the interface is IID_
ILinMonitor.

Initialize

Initializes the receiving FIFO of the monitor.

HRESULT Initialize (UINT16 wRxSize);

Parameter
Parameter Dir. Description

wRxSize [in] Size of receiving FIFO in number of LIN messages

Return Value
Return value Description
VCI_OK Function succeeded
VCI_E_INVALIDARG Value in parameter wRxSize must be higher than 0.
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The value specified in parameter wRxSize defines the lower limit for the size of the FIFO. The
actual size is eventually bigger as specified, because the memory for the FIFOs is reserved page
by page and the pages are always used completely. The size of a element in the FIFO always
conforms to the size of the structure LINMSG.

Activate

Activates the message monitor and connects the receiving FIFO to the LIN controller.

HRESULT Activate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

By default the message monitor is deactivated and disconnected from the bus after it is created
resp. initialized. To connect the monitor to the bus, the bus must be activated. For more
information see Message Monitors, p. 50.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 125 (154)

Deactivate

Deactivates the message monitor and connects the receiving FIFO to the LIN controller.

HRESULT Deactivate (void);

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

If the monitor is deactivated the monitor does not receive any message from the LIN controller.

GetReader

Determines a pointer to the interface IFifoReader of the receiving FIFO of the message
monitor.

HRESULT GetReader (IFifoReader** ppReader);

Parameter
Parameter Dir. Description

ppReader [out] Address of a variable to which a pointer to the interface IFifoReader is
assigned by the receiving FIFO if run successfully. In case of an error the variable is
set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function succeeds if the monitor is initialized with the function Initialize. If the pointer
returned by the function is not required any more the pointer must be released with Release.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Interface Description 126 (154)

GetStatus

Determines the current state of the message monitor and the LIN controller that is connected to
the message monitor.

HRESULT GetStatus (PLINMONITORSTATUS pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to memory area of type LINMONITORSTATUS. If run successfully the
function saves the current settings and the current state of the message monitor
in this memory area.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

The function can always be called, even before the first call of one of the function Initialize.
For more information about the data that are returned see description of the data structure
LINMONITORSTATUS.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 127 (154)

8 Data Structures
8.1 VCI Specific Data Types

The declaration of all VCI specific data types and constants is stored in the files vcitype.h and
restype.h.

8.1.1 VCIID
The data type describes a VCI-wide unique ID resp. a VCI-specific unique ID (LUID).

typedef union _VCIID
{

LUID AsLuid;
INT64 AsInt64

} VCIID, *PVCIID;

Member Dir. Description

AsLuid [out] ID in form of a LUID. Data type LUID is defined in Windows.

AsInt64 [out] ID as a signed 64 bit integer

8.1.2 VCIVERSIONINFO
The structure describes the version information.

typedef struct _VCIVERSIONINFO
{

UINT32 VciMajorVersion;
UINT32 VciMinorVersion;
UINT32 VciReleaseNumber;
UINT32 VciBuildNumber;
UINT32 OsMajorVersion;
UINT32 OsMinorVersion;
UINT32 OsBuildNumber;
UINT32 OsPlatformId;

} VCIVERSIONINFO, *PVCIVERSIONINFO;

Member Dir. Description

VciMajorVersion [out] Major version number of VCI

VciMinorVersion [out] Minor version number of VCI

VciRevNumber [out] Revision number of VCI

VciBuildNumber [out] Build number of VCI

OsMajorVersion [out] Major version number of operating system

OsMinorVersion [out] Minor version number of operating system

OsBuildNumber [out] Build version number of operating system

OsPlatformId [out] Platform ID

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 128 (154)

8.1.3 VCIDEVICEINFO
The structure describes the general information about a device.

typedef struct _VCIDEVICEINFO
{

VCIID VciObjectId;
GUID DeviceClass;

UINT8 DriverMajorVersion;
UINT8 DriverMinorVersion;
UINT16 DriverBuildVersion

UINT8 HardwareBranchVersion
UINT8 HardwareMajorVersion;
UINT8 HardwareMinorVersion;
UINT8 HardwareBuildVersion

union _UniqueHardwareId
{

CHAR AsChar[16];
GUID AsGuid;

} UniqueHardwareId;

CHAR Description[128];
CHAR Manufacturer[126];
UINT16 DriverReleaseVersion

} VCIDEVICEINFO, *PVCIDEVICEINFO;

Member Dir. Description

VciObjectId [out] Unique VCI ID of device. The VCI assigns a system-wide ID to every started device
for the runtime. This ID serves as key for later access to the device.

DeviceClass [out] ID of device class. Every device driver specifies its device class in form of a globally
unique ID (GUID). Different types of devices belong to different categories.

DriverMajorVersion [out] Major version number of device driver

DriverMinorVersion [out] Minor version number of device driver

DriverReleaseVersion [out] Release number of device driver

DriverBuildVersion [out] Build number of device driver

HardwareBranchVer-
sion

[out] Branch version number of hardware

HardwareMajorVersion [out] Major version number of hardware

HardwareMinorVersion [out] Minor version number of hardware

HardwareBuildVersion [out] Build version number of hardware

UniqueHardwareId [out] Unique ID of device. Every device has a unique ID resp. serial number which for
example can be used to distinguish between two different cards of the same class.
The value can be either interpreted as GUID or as character string. If the first two
bytes contain the characters HW it is a serial number in form of a ASCII character
string according to ISO-8859-1 (Latin-1).

Description [out] Further description of device in form of a 0-terminated ASCII character string
according to ISO-8859-1 (Latin-1).

Manufacturer [out] Manufacturer ID in form of a 0-terminated ASCII character string according to ISO-
8859-1 (Latin-1).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 129 (154)

8.1.4 VCIDEVICECAPS
The structure describes the technical features of a device.

typedef struct _VCIDEVICECAPS
{

UINT16 BusCtrlCount;
UINT16 BusCtrlTypes[VCI_MAX_BUSCTRL];

} VCIDEVICECAPS, *PVCIDEVICECAPS;

Member Dir. Description

BusCtrlCount [out] Number of available bus controllers

BusCtrlTypes [out] Table with up to VCI_MAX_BUSCTRL 16 bit values that describe the type of the
respective controller. Valid entries in the table are in a range of 0 to BusCtrlCount-1.
The upper 8 bits of every value of the table define the type of the supported bus, the
lower 8 bits define the type of controller that is used. With the in vcitype.h defined
macros VCI_BUS_TYPE resp. VCI_CTL_TYPE the type of the bus resp. the type of
the controller can be extracted. For predefined constants for all types of bus and
controller types see in vcitype.h.

8.2 BAL Specific Data Types
The declaration of all BAL specific data types and constants is stored in the files baltype.h.

8.2.1 BALFEATURES
The data type describes the features of the Bus Access Layer (BAL) of a controller.

typedef struct _BALFEATURES
{

UINT16 FwMajorVersion;
UINT16 FwMinorVersion;
UINT16 BusSocketCount;
UINT16 BusSocketType[BAL_MAX_SOCKETS];

} BALFEATURES, *PBALFEATURES;

Member Dir. Description

FwMajorVersion [out] Major version number of BAL firmware

FwMinorVersion [out] Minor version number of BAL firmware

BusSocketCount [out] Number of available bus controllers

BusSocketType [out] Table with up to BAL_MAX_SOCKETSL 16 bit values that describe the type of the
respective controller. Valid entries in the table are in a range of 0 to BusSocketCount-1.
The upper 8 bits of every value of the table define the type of the supported bus, the
lower 8 bits define the type of controller. With the in vcitype.h defined macros VCI_
BUS_TYPE resp. VCI_CTL_TYPE the type of the bus resp. the type of the controller
can be extracted. Additionally the file contains the predefined constants for each type
of possible bus and controller types.

If the value in field BusSocketCount does not coincide with the value in field VCIDEVICECAPS.
BusCtrlCount the BAL does not provide all controllers that are available on the device.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 130 (154)

8.2.2 BALSOCKETINFO
The data type describes the information about the opened bus controller.

typedef struct _BALSOCKETINFO
{

VCIID Obid;
UINT16 Type;
UINT16 BusNo;

} BALSOCKETINFO, *PBALSOCKETINFO;

Member Dir. Description

Obid [out] Unique ID of controller. The ID is only valid until the last reference to the superior BAL
object is released.

Type [out] Type of connection. The upper 8 bit of the value define the type of the bus the lower 8
bit the type of the controller. With the in vcitype.h defined macros VCI_BUS_CTRL
resp. VCI_CTL_TYPE the type of the bus resp. the type of the controller can be
extracted. The file vcitype.h contains several predefined constants for each type of
possible bus and controller types.

BusNo [out] Number of bus controller. Valid values: 0 to BALFEATURES.BusSocketCount-1.

8.3 CAN Specific Data Types
The declaration of all CAN specific data types and constants is stored in the files cantype.h.

8.3.1 CANCAPABILITIES
The data type describes the features of a CAN connection.

typedef struct _CANCAPABILITIES
{

UINT16 wCtrlType;
UINT16 wBusCoupling;
UINT16 dwFeatures;
UINT32 dwClockFreq;
UINT32 dwTscDivisor
UINT32 dwCmsDivisor;
UINT32 dwMaxCmsTicks;
UINT32 dwDtxDivisor;
UINT32 dwMaxDtxTicks;

} CANCAPABILITIES1, *PCANCAPABILITIES;

Member Dir. Description

wCtrlType [out] Type of CAN controller. The value of this field is corresponding to a CAN_TYPE_
constant defined in cantype.h.

wBusCoupling [out] Type of bus coupling. For the bus coupling the following values are defined:

CAN_BUSC_LOWSPEED CAN controller has a low speed coupling.

CAN_BUSC_HIGHSPEED CAN controller has a high speed coupling.

dwFeatures [out] Supported features. Value is a logical combination of one or more of the following
constants:
CAN_FEATURE_STDOREXT CAN controller supports 11 or 29 bit messages, but

not both formats simultaneously.

CAN_FEATURE_STDANDEXT CAN controller supports 11 or 29 bit messages
simultaneously.

CAN_FEATURE_RMTFRAME CAN controller supports remote transmission
request (RTR) messages.

CAN_FEATURE_ERRFRAME CAN controller returns error messages.

CAN_FEATURE_BUSLOAD CAN controller supports calculation of the bus load.

CAN_FEATURE_IDFILTER CAN controller allows exact filtering of messages.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 131 (154)

Member Dir. Description

CAN_FEATURE_LISTONLY CAN controller supports operating mode Listen
Only.

CAN_FEATURE_SCHEDULER Cyclic transmission list provided.

CAN_FEATURE_GENERRFRM CAN controller supports generating of error frames.

CAN_FEATURE_DELAYEDTX CAN controller supports delayed transmitting of
messages.

CAN_FEATURE_SINGLESHOT CAN controller supports messages of type Single
Shot. If a message is of type Single Shot the
controller does not try to transmit again if the
message is not transmitted with the first attempt.

CAN_FEATURE_HIGHPRIOR CAN controller supports transmitting of messages
with high priority. Messages with high priority are
assigned to a transmitting buffer by the controller,
the transmitting buffer is prior to messages in the
normal transmitting buffer. Messages of high
priority are transmitted with priority to the bus.

CAN_FEATURE_AUTOBAUD CAN controller supports the automatic detection of
the bit rate regarding the hardware. If this bit is set
and the controller is connected to a running
system, the controller detects the bit rate
autonomously and it can be initialized without
specifying bit timing parameters (see
CANINITLINE).

dwClockFreq [out] Frequency in hertz of the primary clock generator

dwTscDivisor [out] Divisor for the time stamp counter. Resolution of the time stamps of CAN messages is
calculated by the values specified here divided by the frequency of the primary clock
generator.

dwCmsDivisor [out] Divisor for the clock generator of the cyclic transmitting list. Frequency of cyclic
transmitting list is calculated by the frequency of the primary clock generator divided
by the value specified here. If no cyclic transmitting list is available the field contains
value 0.

dwCmsMaxTicks [out] Maximum cyclic time of the cyclic transmitting list in timer ticks. If no cyclic
transmitting list is available the field contains value 0.

dwDtxDivisor [out] Divisor for the clock generator for delayed transmitting of CAN messages. The
resolution of the timer for delayed transmission is calculated by the values specified
here divided by the frequency of the primary clock generator. If delayed transmitting is
not supported the field contains value 0.

dwDtxMaxTicks [out] Maximum delay time in number of timer ticks. If delayed transmitting is not supported
the field contains value 0.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 132 (154)

8.3.2 CANCAPABILITIES2
The data type describes the features of a extended CAN connection.

typedef struct _CANCAPABILITIES2
{

UINT16 wCtrlType;
UINT16 wBusCoupling;
UINT32 dwFeatures;

UINT32 dwCanClkFreq;
CANBTP sSdrRangeMin;
CANBTP sSdrRangeMax;
CANBTP sFdrRangeMin;
CANBTP sFdrRangeMax;

UINT32 dwTscClkFreq;
UINT32 dwTscDivisor;

UINT32 dwCmsClkFreq;
UINT32 dwCmsDivisor;
UINT32 dwCmsMaxTicks;

UINT32 dwDtxClkFreq;
UINT32 dwDtxDivisor;
UINT32 dwDtxMaxTicks;

} CANCAPABILITIES2, *PCANCAPABILITIES2;

Member Dir. Description

CtrlType [out] Type of CAN controller. The value of this field is corresponding to a CAN_TYPE_
constant defined in cantype.h.

wBusCoupling [out] Type of bus coupling. For the bus coupling the following values are defined:
CAN_BUSC_UNDEFINED: undefined
CAN_BUSC_LOWSPEED: CAN controller has a low speed coupling.
CAN_BUSC_HIGHSPEED: CAN controller has a high speed coupling.

dwFeatures [out] Supported features. Value is a logical combination of one or more of the following
constants:
CAN_FEATURE_STDOREXT: CAN controller supports 11 or 29 bit messages,
exclusive, but not both formats simultaneously.
CAN_FEATURE_STDANDEXT: CAN controller supports 11 and 29 bit messages
simultaneously.
CAN_FEATURE_RMTFRAME: CAN controller supports remote transmission request
(RTR) messages.
CAN_FEATURE_ERRFRAME: CAN controller supports returns error frames.
CAN_FEATURE_BUSLOAD: CAN controller supports bus load calculation.
CAN_FEATURE_IDFILTER: CAN controller supports allows exact message filtering.
CAN_FEATURE_LISTONLY: CAN controller supports listen only mode.
CAN_FEATURE_SCHEDULER: cyclic transmitting list provided
CAN_FEATURE_GENERRFRM: CAN controller supports error frame generation.
CAN_FEATURE_DELAYEDTX: CAN controller supports delayed transmitting of
messages.
CAN_FEATURE_SINGLESHOT: CAN controller supports Single shot mode. If a
message is of type Single Shot the controller does not try to transmit again if the
message is not transmitted with the first attempt.
CAN_FEATURE_HIGHPRIOR: CAN controller supports transmitting high priority
messages. Messages with high priority are assigned to a transmitting buffer by the
controller, the transmitting buffer is prior to messages in the normal transmitting
buffer. Messages of high priority are transmitted with priority to the bus.
CAN_FEATURE_AUTOBAUD: CAN controller supports automatic bit rate detection.
CAN_FEATURE_EXTDATA: CAN controller provides messages with extended data
field, if this bit is not set at a CAN FD controller, it supports maximally 8 byte in the
data field.
CAN_FEATURE_FASTDATA: CAN controller supports transmission with fast data bit
rate.
CAN_FEATURE_ISOFRAME: CAN controller supports ISO conform frame (exclusively
CAN FD)

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 133 (154)

Member Dir. Description

CAN_FEATURE_NONISOFRAME: CAN controller supports non ISO conform frame
(different CRC computation, exclusively CAN FD)
CAN_FEATURE_64BITTSC: 64 bit time stamp counter

dwCanClockFreq [out] Frequency in hertz of the primary clock generator. The bit rate generator defines
together with the values in the structure CANBTP the bit transmission rate for the
standard resp. for the nominal arbitration bit rate and the high data bit rate.

sSdrRangeMin [out] Minimum bit timing values for standard resp. the nominal arbitration bit rate

sSdrRangeMax [out] Maximum bit timing values for standard Minimum bit timing values for standard resp.
the nominal arbitration bit rate bit rate

sFdrRangeMin [out] Minimum bit timing values for fast data bit rate. All fields of the structure contain the
value 0 if the controller do not support a high data bit rate. See CAN_FEATURE_
FASTDATA.

sFdrRangeMax [out] Maximum bit timing values for fast data bit rate. All fields of the structure contain the
value 0 if the controller do not support a high data bit rate. See CAN_FEATURE_
FASTDATA.

dwTscClockFreq [out] Frequency in Hertz of clock generator which is used to create the time stamps of CAN
messages (Time Stamp Counter).

dwTscDivisor [out] Divisor for the message time stamp counter. Resolution of the time stamps of CAN
messages is calculated by the values specified here divided by the frequency of the
primary clock generator.

dwCmsClockFreq [out] Frequency in Hertz of the clock generator of the cyclic transmitting list (Cyclic Message
Timer). If no cyclic transmitting list is available the field contains value 0.

dwCmsDivisor [out] Divisor for the clock generator of the cyclic transmitting list. Frequency of cyclic
transmitting list is calculated by the frequency of the cyclic message timer divided by
the value specified here. If no cyclic transmitting list is available the field contains
value 0.

dwCmsMaxTicks [out] Maximum cyclic time of the cyclic transmitting list in timer ticks. If no cyclic
transmitting list is available the field contains value 0.

dwDtxClockFreq [out] Frequency in Hertz of clock generator, that is used for delayed transmission of CAN
messages (Delay Timer). If delayed transmission is not supported the field contains
value 0.

dwDtxDivisor [out] Divisor for the clock generator for delayed transmission of messages. The resolution of
the timer for delayed transmission of messages is calculated by the values specified
here divided by the frequency of the delay timer. If delayed transmission is not
supported the field contains value 0.

dwDtxMaxTicks [out] Maximum delay time in number of timer ticks. If delayed transmission is not supported
the field contains value 0.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 134 (154)

8.3.3 CANBTRTABLE
The data structure serves to determine the bit rate and is used by the function
ICanControl::DetectBaud.

typedef struct _CANBTRTABLE
{

UINT8 bCount;
UINT8 bIndex;
UINT8 abBtr0[64];
UINT8 abBtr1[64];

} CANBTRTABLE, *PCANBTRTABLE;

Member Dir. Description

bCount [in] Number of valid entries in the tables abBtr0 and abBtr1. The first valid value has to be
set in abBtr0[0] resp. abBtr1[0].

bIndex [in/out] If run successfully DetectBaud returns in this field the table index of the detected
bus timing values. Before calling additional characters for the CAN operating mode
used in DetectBaud can be specified here. Valid are exclusively CAN_OPMODE_
LOWSPEED or 0, if no low speed coupling is desired.

abBtr0 [in] Table with up to 64 values for the bus timing register 0. This values are used to
determine the actual transmission rate on the bus. The value of an entry corresponds
to the BT0 register of Philips SJA 1000 CAN controller with a clock frequency of 16 MHz.

abBtr1 [in] Table with up to 64 values for the bus timing register 1. This values are used to
determine the actual transmission rate on the bus. The value of an entry corresponds
to the BT1 register of Philips SJA 1000 CAN controller with a clock frequency of 16 MHz.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 135 (154)

8.3.4 CANBTP
The data structure defines the parameters to specify the bit transmission rate and the sampling
point.

typedef struct _CANBTP
{

UINT32 dwMode;
UINT32 dwBPS;
UINT16 wTS1;
UINT16 wTS2;
UINT16 wSJW;
UINT16 wTDO;

} CANBTP, *PCANBTP;

Member Dir. Description

dwMode [in] Operating mode. This bit field determines how the following fields are interpreted. For
the operating mode a logical combination of one or more of the following constants
can be specified:
CAN_BTMODE_RAW: Native mode. The fields dwBPS, wTS1, wTS2, wSJW and wTDO
contain hardware specific values for the corresponding registers of the controller. The
values of these fields must be inside the limits which are determined by the fields
sSdrRangeMin resp. sFdrRangeMin and sSdrRangeMax resp. sFdrRangeMax of
structure CANCAPABILITIES2.
CAN_BTMODE_TSM: Activating triple sampling mode

dwBPS [in] Transmitting rate in bits per second. If in field dwMode the bit CAN_BTMODE_RAW is
set, the hardware specific value for the baud rate prescaler register is expected here. If
not, the bit rate in bits per second is expected.

wTS1 [in] Length of time segment 1. If in field dwMode the bit CAN_BTMODE_RAW is set, the
hardware specific number of time quanta for the time segment 1 is expected here. If
not, the value defines the length of this time segment in relation to the total number
of time quanta per bit.

wTS2 [in] Length of time segment 2. If in field dwMode the bit CAN_BTMODE_RAW is set, the
hardware specific number of time quanta for the time segment 2 is expected here. If
not, the value defines the length of this time segment in relation to the total number
of time quanta per bit.

wSJW [in] Jump width for re-synchronization. If in field dwMode the bit CAN_BTMODE_RAW is
set, the hardware specific number of time quanta for the re-synchronization is
expected here. If not, the value defines the length of the jumping width in relation to
the total number of time quanta per bit.

wTDO [in] Offset to the transceiver delay (or Secondary Sample Point SSP) that is automatically
determined by the controller. Value is only relevant with fast data bit rate. If in field
dwMode the bit CAN_BTMODE_RAW is set, the hardware specific number of CAN
clock cycles is expected here. If not, the value defines the Secondary Sample Point
(SSP) in relation to the total number of time quanta per bit (example: if wTS1+wTS2=
100 and wTDO=65 the SSP is 65% of a bit time). Value 0 deactivates the SSP. If value
0XFFF is specified, the SSP offset is calculated internally based on the other
parameters (simplified SSP positioning). For more information about the formula see
CiA specification 601-3 Part 3, chapter System Design Recommendation.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 136 (154)

8.3.5 CANBTPTABLE
The data structure serves to detect the nominal bit rate and the fast bit rate if supported by the
computer. The structure is used by function ICanControl2::DetectBaud.

typedef struct _CANBTPTABLE
{

UINT8 bCount;
UINT8 bIndex;
struct
{

CANBTP sSdr;
CANBTP sFdr;

} asBTP[64];
} CANBTPTABLE, *PCANBTPTABLE;

Member Dir. Description

bCount [in] Number of valid values in table asBTP. The first valid values have to be set in asBtP[0].

bIndex [out] Table index with the bit timing parameters of the detected bit rate

asBTP [in] Table with up to 64 values of different default values, that can be used to determine
the actual bit transmission rate on the bus. The table contains the paired bit timing
parameters for the default and the nominal bit rate in field sSdr and the fast bit rate in
field sFdr. The values for the fast data bit rate are only relevant if the controller
supports this and if in parameter bExMode the value CAN_EXMODE_FASTDATA is
specified when calling the function ICanControl2::DetectBaud. Otherwise the
values in sFdr have no significance.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 137 (154)

8.3.6 CANINITLINE
The structure is used to initialize the CAN control unit.

typedef struct _CANINITLINE
{

UINT8 bOpMode;
UINT8 bReserved;
UINT8 bBtReg0; UINT8 bBtReg1;

} CANINITLINE, *PCANINITLINE;

Member Dir. Description

bOpMode [in] Operating mode of controller. For the operating mode a logical combination of one or
more of the following constants can be specified:

CAN_OPMODE_STANDARD Controller accepts messages with 11 bit identifier.

CAN_OPMODE_EXTENDED Controller accepts messages with 29 bit identifier.

CAN_OPMODE_LISTONLY Controller is used in Listen Only mode.

CAN_OPMODE_ERRFRAME Errors are reported to the application via special
messages.

CAN_OPMODE_LOWSPEED Controller uses low speed bus coupling.

CAN_OPMODE_AUTOBAUD If supported by the controller the controller
performs an automatic detection of the bit rate
during the initialization. Controller must be
connected with running system. If this bit is set the
bit timing parameters specified in the fields bBtReg0
and bBtReg1 are ignored.

bReserved [in] Reserved. Value must be initialized with 0.

bBtReg0 [in] Value for the bus timing register 0 of the controller. Value corresponds to BTR0
register of Philips SJA 1000 CAN controllers with a clock frequency of 16 MHz. For
more information see data sheet of SJA 1000.

bBtReg1 [in] Value for the bus timing register 1 of the controller. Value corresponds to BTR1
register of Philips SJA 1000 CAN controllers with a clock frequency of 16 MHz. For
more information see data sheet of SJA 1000.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 138 (154)

8.3.7 CANINITLINE2
The structure is used to initialize the extended CAN control unit.

typedef struct _CANINITLINE2
{

UINT8 bOpMode;
UINT8 bExMode;
UINT8 bSFMode;
UINT8 bEFMode;
UINT32 dwSFIds;
UINT32 dwEFIds;
CANBTP sBtpSdr;
CANBTP sBtpFdr;

} CANINITLINE2, *PCANINITLINE2;

Member Dir. Description

bOpMode [in] Operating mode of controller. For the operating mode a logical combination of one or
more of the following constants can be specified:
CAN_OPMODE_STANDARD: controller accepts messages with 11 bit identifier.
CAN_OPMODE_EXTENDED: controller accepts messages with 29 bit identifier.
CAN_OPMODE_LISTONLY: controller is used in Listen Only mode (TX passive).
CAN_OPMODE_ERRFRAME: controller supports error frames.
CAN_OPMODE_LOWSPEED: controller uses low speed bus coupling.
CAN_OPMODE_AUTOBAUD: if supported by the controller the controller performs an
automatic detection of the bit rate during the initialization. Controller must be
connected with running system. If this bit is set the bit timing parameters specified in
the fields sBtpSdr and sBtpFdr are ignored.

bExMode [in] Extended operating mode. If supported by the controller, a logical combination of one
or more of the following constants can be specified:
CAN_EXMODE_DISABLED: no extended operating mode is activated. The value also
must be specified with all other controllers that do not support CAN FD operating
mode. For more information see description of field dwFeatures of structure
CANCAPABILITIES2.
CAN_EXMODE_EXTDATA: allows messages with extended data length up to 64 bytes.
CAN_EXMODE_FASTDATA: allows fast data bit rate (exclusively available with CAN
FD controller with the feature CAN_FEATURE_NONISOFRM)
CAN_EXMODE_NONISO:: supports non ISO conform frames.

bSFMode [in] Default value for the operating mode of 11 bit filter. Operating mode can also be
changed with function ICanControl2::SetFilterMode.

bEFMode [in] Default value for the operating mode of 29 bit filter. Operating mode can also be
changed with function ICanControl2::SetFilterMode.

dwSFIds [in] Number of CAN IDs supported by the 11 bit filter. With value 0 not filter is specified.
Controller allows all messages with 11 bit ID to pass. The operating mode specified in
bSFMode is not considered.

dwEFIds [in] Number of CAN IDs supported by the 29 bit filter. With value 0 not filter is specified.
Controller allows all messages with 29 bit ID to pass. The operating mode specified in
bEFMode is not considered.

sBtpSdr [in] Bit timing parameter for default or nominal bit rate resp. for bit rate during the
arbitration phase. For more information see description of data type CANBTP.

sBtpFdr [in] Bit timing parameter for fast data bit rate. Field is exclusively relevant if the controller
supports the fast data transmission and if constant CAN_EXMODE_FASTDATA in field
bExMode is specified. For more information see description of data type CANBTP.

8.3.8 CANLINESTATUS
The data type describes the current status of a CAN control unit.

typedef struct _CANLINESTATUS
{

UINT8 bOpMode;
UINT8 bBtReg0;
UINT8 bBtReg1;
UINT8 bBusLoad;
UINT32 dwStatus;

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 139 (154)

} CANLINESTATUS, *PCANLINESTATUS;

Member Dir. Description

bOpMode [in] Current operating mode of controller. Value is a logical combination of one or more in
cantype.h defined constants CAN_OPMODE_ and corresponds to the value of the field
bOpMode specified in parameter pInitLine when calling the function
ICanControl::InitLine.

bBtReg0 [out] Current value Bus-Timing-Register 0. Value corresponds to BTR0 register of Philips SJA
1000 CAN controllers with a clock frequency of 16 MHz. For more information see
data sheet of SJA 1000.

bBtReg1 [out] Current value bus timing register 1. Value corresponds to BTR1 register of Philips SJA
1000 CAN controllers with a clock frequency of 16 MHz. For more information see
data sheet of SJA 1000.

bBusLoad [out] Bus load in the second before the call of the function in percentage (0 to 100). Value
shows a state. To monitor the bus load over a time span use appropriate analysis tools.
Value is exclusively valid if calculation of bus load is supported by the controller (see
CANCAPABILITIES).

dwStatus [out] Current status of CAN controller. Value is a logical combination of one or more of the
following constants:

CAN_STATUS_TXPEND CAN controller is currently transmitting a message to
the bus.

CAN_STATUS_OVRRUN Data overflow in the receiving buffer of the CAN
controller had happened.

CAN_STATUS_ERRLIM Overflow of an error counter of the CAN controller has
happened.

CAN_STATUS_BUSOFF CAN controller has shifted to state BUS-OFF.

CAN_STATUS_ININIT CAN controller is in stopped state.

CAN_STATUS_BUSCERR Faulty bus coupling, only relevant with CAN interfaces
with CAN low-speed transceiver and activated low-
speed CAN bus. The output pin ERR of the CAN low-
speed transceiver is low active. If the output pin ERR of
the CAN low-speed transceiver is set to 0, the flag
DCAN_STATUS_BUSCERR in the CAN controller status is
set to 1. If the output pin ERR of the CAN low-speed
transceiver is set to 1, the flag DCAN_STATUS_BUSCERR
in the CAN controller status is set to 0. This means, if an
error occurs on the CAN bus line of the CAN low-speed
transceiver, the flag DCAN_STATUS_BUSCERR in the
CAN controller status is set to 1.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 140 (154)

8.3.9 CANLINESTATUS2
The data type describes the current status of a CAN control unit.

typedef struct _CANLINESTATUS
{

UINT8 bOpMode;
UINT8 bExMode;
UINT8 bBusLoad;
UINT8 bReserved;
CANBTP sBtpSdr;
CANBTP sBtpFdr;
UINT32 dwStatus;

} CANLINESTATUS2, *PCANLINESTATUS2;;

Member Dir. Description

bOpMode [in] Current operating mode of controller. Value is a logical combination of one or more in
cantype.h defined constants CAN_OPMODE_ (see CANINITLINE2) and corresponds
to the value of the field bOpMode specified in parameter pInitLinewhen calling the
function ICanControl2::InitLine.

bExMode [in] Current extended operating mode of controller. Value is a logical combination of one
or more in cantype.h defined constants CAN_EXMODE_ (see CANINITLINE2) and
corresponds to the value of the field bExMode specified in parameter pInitLinewhen
calling the function ICanControl2::InitLine.

bBusLoad [out] Bus load in the second before the call of the function in percentage (0 to 100). Value
shows a state. To monitor the bus load over a time span use appropriate analysis tools.
Value is exclusively valid if calculation of bus load is supported by the controller (see
CANCAPABILITIES2).

bReserved Reserved, set to 0

sBtpSdr [out] Current bit timing parameter for nominal bit rate resp. for bit rate during the
arbitration phase

sBtpFdr [out] Current bit timing parameter for fast data bit rate

dwStatus [out] Current status of CAN controller. Value is a logical combination of one or more of the
following constants:
CAN_STATUS_TXPEND: CAN controller is currently transmitting a message to the
bus (transmission pending).
CAN_STATUS_OVRRUN: data overflow in the receiving buffer of the CAN controller
had happened.
CAN_STATUS_ERRLIM: overflow of an error counter of the CAN controller has
happened.
CAN_STATUS_BUSOFF: CAN controller has shifted to state BUS-OFF.
CAN_STATUS_ININIT: CAN controller is in stopped state.
CAN_STATUS_BUSCERR: Faulty bus coupling, only relevant with CAN interfaces with
CAN low-speed transceiver and activated low-speed CAN bus. The output pin ERR of
the CAN low-speed transceiver is low active. If the output pin ERR of the CAN low-
speed transceiver is set to 0, the flag DCAN_STATUS_BUSCERR in the CAN controller
status is set to 1. If the output pin ERR of the CAN low-speed transceiver is set to 1,
the flag DCAN_STATUS_BUSCERR in the CAN controller status is set to 0. This means, if
an error occurs on the CAN bus line of the CAN low-speed transceiver, the flag DCAN_
STATUS_BUSCERR in the CAN controller status is set to 1.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 141 (154)

8.3.10 CANCHANSTATUS
The data type describes the current status of the CAN message channel.

typedef struct _CANLINESTATUS
{

CANLINESTATUS sLineStatus;
BOOL32 fActivated;
BOOL32 fRxOverrun;
UINT8 bRxFifoLoad;
UINT8 bTxFifoLoad;

} CANCHANSTATUS, *PCANCHANSTATUS;

Member Dir. Description

sLineStatus [out] Current status of CAN controller. For more information see CANLINESTATUS.

fActivated [out] Shows if message channel is active (TRUE) or inactive (FALSE).

fRxOverrun [out] Signalizes an overflow in the receiving buffer with the value TRUE.

bRxFifoLoad [out] Current filling level of receiving FIFO in percentage

bTxFifoLoad [out] Current filling level of transmitting FIFO in percentage

8.3.11 CANCHANSTATUS2
The data type describes the current status of the CAN message channel with extended interface.

typedef struct _CANCHANSTATUS2
{

CANLINESTATUS sLineStatus;
BOOL8 fActivated;
BOOL8 fRxOverrun;
UINT8 bRxFifoLoad;
UINT8 bTxFifoLoad;

} CANCHANSTATUS, *PCANCHANSTATUS2;

Member Dir. Description

sLineStatus [out] Current status of CAN controller. For more information see CAN_STATUS_ in
CANLINESTATUS2.

fActivated [out] Shows if message channel is active (TRUE) or inactive (FALSE).

fRxOverrun [out] Signalizes an overflow in the receiving buffer with the value TRUE.

bRxFifoLoad [out] Receive FIFO load in percent (0..100)

bTxFifoLoad [out] Transmit FIFO load in percent (0..100)

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 142 (154)

8.3.12 CANSCHEDULERSTATUS
The data type describes the current status of the cyclic transmitting list.

typedef struct _CANSCHEDULERSTATUS
{

UINT8 bTaskStat;
UINT8 abMsgStat[16];

} CANSCHEDULERSTATUS, *PCANSCHEDULERSTATUS;

Member Dir. Description

bTaskStat [out] Current status of transmitting task

CAN_CTXTSK_STAT_STOPPED Transmitting task is stopped resp. deactivated.

CAN_CTXTSK_STAT_RUNNING Transmitting task is performed resp. is active.

abMsgStat Table with status of all 16 transmitting objects. Each table entry can take one of the
following values:

CAN_CTXMSG_STAT_EMPTY The entry is not assigned to a transmitting
object resp. the entry is currently not used.

CAN_CTXMSG_STAT_BUSY Transmitting object is currently processed.

CAN_CTXMSG_STAT_DONE Processing of transmitting object is finished.

8.3.13 CANSCHEDULERSTATUS2
The data type describes the current status of the cyclic transmitting list.

typedef struct _CANSCHEDULERSTATUS2
{
CANLINESTATUS2 sLineStatus;
UINT8 bTaskStat;
UINT8 abMsgStat[16];
}
CANSCHEDULERSTATUS2, *PCANSCHEDULERSTATUS2;

Member Dir. Description

SLineStatus [out] Current state of CAN controller (see CAN_STATUS_ in data structure CANLINESTATUS2.

bTaskStat [out] Current status of transmitting task
CAN_CTXTSK_STAT_STOPPED: cyclic transmit task stopped
CAN_CTXTSK_STAT_RUNNING: cyclic transmit task running

abMsgStat Table with status of all 16 transmitting objects. Each table entry can take one of the
following values:
CAN_CTXTSK_STAT_EMPTY: entry is not assigned to a transmitting object resp. the
entry is currently not used.
CAN_CTXTSK_STAT_BUSY: processing of message in progress
CAN_CTXTSK_STAT_DONE: processing of message completed

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 143 (154)

8.3.14 CANMSGINFO
The data type summarizes different information about CAN messages in a union. The individual
values can either be addresses via byte fields or via bus bit fields.

typedef union _CANMSGINFO
{

struct
{

UINT8 bType;
union
{

UINT8 bReserved;
UINT8 bFlags2;

};
UINT8 bFlags;
UINT8 bAccept;

} Bytes;

struct
{

UINT32 type: 8;

UINT32 ssm : 1;
UINT32 hpm : 1;
UINT32 edl : 1;
UINT32 fdr : 1;
UINT32 esi : 1;
UINT32 res : 3;

UINT32 dlc : 4;
UINT32 ovr : 1;
UINT32 srr : 1;
UINT32 rtr : 1;
UINT32 ext : 1;

UINT32 afc : 8;
} Bits;

}CANMSGINFO, *PCANMSGINFO;

The information are accessed byte by byte via the following byte fields:

Fields Dir. Description

Bytes.bType [in/out] Type of message. See bits.type.

Bytes.bReserved Reserved. Due to compatibility reasons set field always to 0. See bits.res.

Bytes.bFlags2 [in/out] Extended message flags.
CAN_MSGFLAGS2_SSM: [bit 0] single shot mode (see Bits.ssm)
CAN_MSGFLAGS2_HPM: [bit 1] high priority message (see Bits.hpm)
CAN_MSGFLAGS2_EDL: [bit 2] extended data length (see Bits.edl)
CAN_MSGFLAGS2_FDR: [bit 3] fast data bit rate (see Bits.fdr)
CAN_MSGFLAGS2_ESI: [bit 4] error state indicator (see Bits.esi)
CAN_MSGFLAGS2_RES: [bit 5..7] reserved bits (see Bits.res)

Bytes.bFlags [in/out] Standard message flags.
CAN_MSGFLAGS_DLC: [bit 0] data length code (see Bits.dlc)
CAN_MSGFLAGS_OVR: [bit 4] data overrun flag (see Bits.ovr)
CAN_MSGFLAGS_SRR: [bit 5] self reception request (see Bits.srr)
CAN_MSGFLAGS_RTR: [bit 6] remote transmission request (see Bits.rtr)
CAN_MSGFLAGS_EXT: [bit 7] frame format (0 = 11 bit, 1= 29 bit, (see Bits.ext)

Bytes.bAccept [out] Shows in receive messages which filter has accepted the message. See bits.afc.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 144 (154)

The information are accessed bit by bit via the following bit fields:

Bit field Dir. Description

Bits.type [in/out] Type of message, for transmit messages exclusively the message type CAN_MSGTYPE_
DATA is valid.
CAN_MSGTYPE_
DATA

Standard data message.
Fields in receive messages (CANMSG/CANMSG2) : dwMsgId
contains the ID of the message, dwTime the receiving time in
ticks, abData contains depending on the length (see bits.dlc) the
data bytes of the message.
Fields in transmit messages CANMSG/CANMSG2) : dwMsgId
contains the message ID, abData the data bytes to be
transmitted, dwTime is 0 or in delayed messages the desired
delay time in ticks to the message transmitted before. See
Transmitting Messages Delayed, p. 30.

CAN_MSGTYPE_
INFO

Information message. Generated by certain events resp. state
changes of the control unit and registered in the receiving
buffers of all active message channels. Field dwMsgId of the
message (CANMSG/CANMSG2) contains the value CAN_MSGID_
INFO. Field abData[0] contains one of the following values:
CAN_INFO_START: controller is started, field dwTime contains
the starting point.
CAN_INFO_STOP controller is stopped, field dwTime contains
value 0.
CAN_INFO_RESET controller is reset, field dwTime contains
value 0.

CAN_MSGTYPE_
ERROR

Error frame.
Generated if a bus error occurs and registered in the receiving
buffers off all active message channels, provided that the flag
CAN_OPMODE_ERRFRAME is set during the initialization of the
CAN controller. Field dwMsgId of the message (CANMSG/
CANMSG2) contains the value CAN_MSGID_ERROR, field
dwTime the time of the event and field abData[0] contains one
of the following values: CAN_ERROR_STUFF (stuff error),
CAN_ERROR_FORM (format error), CAN_ERROR_ACK
(acknowledgement error), CAN_ERROR_BIT (bit error), CAN_
ERROR_FDB (fast data bit error), CAN_ERROR_CRC (CRC
error), CAN_ERROR_OTHER (unspecified), CAN_ERROR_DLC
(data length error).

Additionally the field abData[1] contains the low byte of the
current CAN state. See description of field dwStatus of structure
CANCAPABILITIES or CANCAPABILITIES2. The content of
all other data fields is undefined.

CAN_MSGTYPE_
STATUS

Status frame.
Generated by state changes of the CAN controller and registered
in the receiving buffers of all active message channels. Field
dwMsgId (CANMSG/CANMSG2) contains the value CAN_
MSGID_STATUS, field dwTime the time of the event and field
abData[0] contains the low byte of the current CAN state. The
content of the other data fields is undefined.

CAN_MSGTYPE_
WAKEUP

Not used.

CAN_MSGTYPE_
TIMEOVR

Timer overrun
Generated by the time stamp counter with every overflow and
registered in the receiving buffer of all active message channels.
Field dwTime of the message contains the time of the event and
field dwMsgId the number of occurred overflows (normally 1).
The content of the data fields abData is undefined.

CAN_MSGTYPE_
TIMERST

Not used.

Bits.ssm [in] Single shot message. If this bit is set in transmit messages the controller tries to transmit
the message only once. If the message loses its arbitration during the first transmitting
attempt, the controller rejects the message and no further automatic transmitting
attempt follows. If this bit is 0 no transmitting is attempted until the message has been
transmitted over the bus. For receive messages this bit has no significance.

Bits.hpm [in] High priority message. Transmit messages with high priority are assigned to a
transmitting buffer by the controller, the transmitting buffer is prior to messages in the
normal transmitting buffer. Messages of high priority are transmitted with priority to the
bus. For receive messages this bit has no significance.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 145 (154)

Bit field Dir. Description

Bits.edl [in/out] Message with extended data length. For more information see description of data length
field Bits.dlc. The bit is exclusively valid with extended controller operating mode CAN_
EXMODE_EXTDATA.

Bits.fdr [in/out] This bit can be set in transmit messages to transfer the data bytes and bits from the DLC
field with high bit rate on the bus. If this bit is set the RTR bit is ignored. See description
of bits.rtr. The bit is exclusively valid with extended controller operating mode CAN_
EXMODE_FASTDATA.

Bits.esi [out] Error state indicator. Nodes that are error active transmit this bit dominant (0), nodes
that are error passive recessive (1). This bit is exclusively considered in receive messages.
In transmit messages it is has no significance and must be set to 0.

Bits.res Reserved for further extensions. Due to compatibility reasons set field always to 0.

Bits.dlc [in/out] Data length code. The value defines the number of valid data bytes in field abData of a
message. The following assignment applies:

dlc
0...8
9
10
11
12
13
14
15

Number of data bytes
0...8
12
16
20
24
32
48
64

A value higher than 8 is exclusively allowed in messages with extended data field (see
CANMSG2). To transmit a message with more than 8 byte the CAN must be used in the
operating mode CAN_EXMODE_EXTDATA and additionally the bit edl of the message to
be transmitted must be set to 1. Basically this is exclusively possible with controllers with
extended functionality (CAN FD).

Bits.ovr [out] Data overrun. The bit is set to 1 in receive messages if an overflow of the receiving FIFO
took place.

Bits.srr [in/out] Self reception request. If the bit is set in transmit messages the message is assigned to
the receiving FIFO as soon as it is transmitted to the bus. In receive messages a set bit
indicates that it is a self reception message. This bit must not be mistaken as substitute
remote request (SRR) bit of CAN FD.

Bits.rtr [in/out] Remote transmission request. This bit is set in transmit messages to scan other bus
participants specifically for certain messages. Observe that the bit is ignored if one of the
bits edl orfdr is also set. RTR messages are not possible with CAN FD.

Bits.ext [in/out] Extended frame format (0=standard, 1=extended)

Bits.afc [out] Acceptance filter code, shows in receive messages which filter accepted the message. The
following values are defined:

CAN_ACCEPT_
ALWAYS

The message is always accepted. All other messages than these
of type CAN_MSGTYPE_DATA contain this value.

CAN_ACCEPT_
FILTER1
resp. CAN_ACCEPT_
FILTER2

The message has either been accepted by the acceptance filter
(CAN_ACCEPT_FILTER1) or by the filter list (CAN_ACCEPT_
FILTER2). Exclusively messages of type CAN_MSGTYPE_DATA
contain this value. The filter must be used in operating mode
CAN_FILTER_INCL.

CAN_ACCEPT_EXCL This value is used in the filter operating mode CAN_FILTER_
EXCL if a message of type CAN_MSGTYPE_DATA has been
accepted.
Detailed information about functionality of message filters and
the different operating modes see Message Filter, p. 42.

8.3.15 CANMSG
The data type describes the structure of CAN message telegrams.

typedef struct _CANMSG
{

UINT32 dwTime;
UINT32 dwMsgId;
CANMSGINFO uMsgInfo;
UINT8 abData[8];

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 146 (154)

} CANMSG, *PCANMSG;

Member Dir. Description

dwTime In receive messages this field contains the starting point of the message in ticks. For more
information see Reception Time of a Message, p. 28. In transmit messages this field
determines with how many ticks delay the message is transmitted after the message sent
before.

dwMsgId CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsgInfo Bit field with information about the message type. For detailed description of bit field see
CANMSGINFO.

abData Array for up to 8 data bytes. Number of valid data bytes is defined by field uMsgInfo.Bits.dlc.

Note that, when using interfaces with FPGA, error frames get the same time stamp (field
dwTime) as the last received CAN message.

8.3.16 CANMSG2
The data type describes the structure of extended CAN message telegrams.

typedef struct _CANMSG2
{

UINT32 dwTime;
UINT32 dwMsgId;
CANMSGINFO uMsgInfo;
UINT8 abData[64];

} CANMSG2, *PCANMSG2;

Member Dir. Description

dwTime [out] In receive messages this field contains the receiving point of the message in ticks. For more
information see Reception Time of a Message, p. 28. In transmit messages this field
determines with how many ticks delay the message is transmitted after the message sent
before.

dwMsgId [out] CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsgInfo [out] Bit field with information about the message type. For detailed description of bit field see
CANMSGINFO.

abData [out] Array for up to 64 data bytes. Number of valid data bytes is defined by field uMsgInfo.Bits.dlc.

Note that, when using interfaces with FPGA, error frames get the same time stamp (field
dwTime) as the last received CAN message.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 147 (154)

8.3.17 CANCYCLICTXMSG
This data type describes the structure of a cyclic transmitting list.

typedef struct _CANCYCLICTXMSG
{

UINT16 wCycleTime;
UINT8 bIncrMode;
UINT8 bByteIndex;
UINT32 dwMsgId;
CANMSGINFO uMsgInfo;
UINT8 abData[8];

} CANCYCLICTXMSG, *PCANCYCLICTXMSG;

Member Dir. Description

wCycleTime [out] Cycle time of the message in number ticks. The cycle time can be calculated in the fields
dwClockFreq and dwCmsDivisor of structure CANCAPABILITIES with the following
formula.
Tcycle [s] = (dwCmsDivisor / dwClockFreq) * wCycleTime
The maximum value for the field is limited to the value in field dwCmsMaxTicks of structure
CANCAPABILITIES.

bIncrMode [out] Determines if a part of the cyclic transmitting list is automatically incremented after each
transmitting.

CAN_CTXMSG_INC_NO The message field is not incremented automatically.

CAN_CTXMSG_INC_ID Increments CAN identifier (field dwMsgId). If the field reaches
the value 2048 (11 bit ID) resp. 536.870.912 (29 bit ID) an
overflow automatically takes place.

CAN_CTXMSG_INC_8 Increments an 8 bit value in the data field abData of the
message. The data byte to be incremented is determined via
the parameter bByteIndex. If the maximum value 255 is
exceeded an overflow to 0 takes place.

CAN_CTXMSG_INC_16 Increments a 16 bit value in the data field abData of the
message. The low byte of the 16 bit value to be incremented is
determined via the field bByteIndex. The high byte is in the
data field on position bByteIndex+1. If the maximum value
655350 is exceeded an overflow to 0 takes place.

bByteIndex [out] Determines the byte resp. the low byte (LSB) of the 16 bit value in data field abData, that is
automatically incremented after each transmission. The value range of the field is limited by
the data length specified in the field uMsgInfo.Bits.dlc of structure CANMSGINFO and it is
limited to the range 0 to (dlc–1) in case of 8 bit increment and 0 to (dlc–2) in case of 16 bit
increment.

dwMsgId [out] CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsgInfo [out] Bit field with information about the message type. For description of bit field see
CANMSGINFO.

abData [out] Array for up to 8 data bytes. Number of valid data bytes is defined by field uMsgInfo.Bits.dlc.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 148 (154)

8.3.18 CANCYCLICTXMSG2
This data type describes the structure of an extended cyclic transmitting list.

typedef struct _CANCYCLICTXMSG2
{

UINT16 wCycleTime;
UINT8 bIncrMode;
UINT8 bByteIndex;
UINT32 dwMsgId;
CANMSGINFO uMsgInfo;
UINT8 abData[64];

} CANCYCLICTXMSG2, *PCANCYCLICTXMSG2;

Member Dir. Description

wCycleTime [out] Cycle time of the message in number ticks. The cycle time can be calculated in the fields
dwClockFreq and dwCmsDivisor of structure CANCAPABILITIES2 with the following
formula.
Tcycle [s] = (dwCmsDivisor / dwClockFreq) * wCycleTime
The maximum value for the field is limited to the value in field dwCmsMaxTicks of structure
CANCAPABILITIES2.

bIncrMode [out] Determines if a part of the cyclic transmitting list is automatically incremented after each
transmitting.
CAN_CTXMSG_INC_NO: no increment
CAN_CTXMSG_INC_ID: Increments CAN identifier (field dwMsgId). If the field reaches the
value 2048 (11 bit ID) resp. 536.870.912 (29 bit ID) an overflow automatically takes place.
CAN_CTXMSG_INC_8: Increment 8 bit data field. The data byte to be incremented is
determined via the parameter bByteIndex. If the maximum value 255 is exceeded an
overflow to 0 takes place.
CAN_CTXMSG_INC_16: Increment 16 bit data field. The low byte of the 16 bit value to be
incremented is determined via the field bByteIndex. The high byte is in the data field on
position bByteIndex+1. If the maximum value 655350 is exceeded an overflow to 0 takes
place.

bByteIndex [out] Field determines the byte resp. the low byte (LSB) of the 16 bit value in data field abData,
that is automatically incremented after each transmission. The value range of the field is
limited by the data length specified in the field uMsgInfo.Bits.dlc of structure CANMSGINFO
and it is limited to the range 0 to (dlc–1) in case of 8 bit increment and 0 to (dlc–2) in case of
16 bit increment.

dwMsgId [out] CAN ID of the message in Intel format (aligned right) without RTR bit.

uMsgInfo [out] Bit field with information about the message type. For description of bit field see
CANMSGINFO.

abData [out] Array for up to 64 data bytes. Number of valid data bytes is defined by field uMsgInfo.Bits.dlc.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 149 (154)

8.4 LIN Specific Data Types
The declaration of all LIN specific data types and constants is stored in the files lintype.h.

8.4.1 LINCAPABILITIES
The data type describes the features of a LIN connection.

typedef struct _LINCAPABILITIES
{

UINT16 dwFeatures;
UINT32 dwClockFreq;
UINT32 dwTscDivisor;

} LINCAPABILITIES, *PLINCAPABILITIES;

Member Dir. Description

dwFeatures [out] Supported features. Value is a logical combination of one or more of the following
constants:
LIN_FEATURE_MASTER: LIN controller supports Master mode.
LIN_FEATURE_AUTORATE: LIN controller supports automatic bit rate detection.
LIN_FEATURE_ERRFRAME: LIN controller supports reception of error frames.
LIN_FEATURE_BUSLOAD: LIN controller supports bus load calculation.
LIN_FEATURE_SLEEP: LIN controller supports sleep message (master only).
LIN_FEATURE_WAKEUP: LIN controller supports wakeup message.

dwClockFreq [out] Frequency in hertz of the primary timer

dwTscDivisor [out] Divisor for the time stamp counter. The time stamp counter returns the time stamp for
LIN messages. Frequency of time stamp counter is calculated by the frequency of the
primary timer divided by the value specified here.

8.4.2 LININITLINE
The structure is used to initialize a LIN controller and determines the operating mode and the
transmission rate.

typedef struct _LININITLINE
{

UINT8 bOpMode;
UINT8 bReserved;
UINT16 wBitrate;

} LININITLINE, *PLININITLINE;

Member Dir. Description

bOpMode [in] Operating mode of LIN controller. One or more of the following constants can be
specified:
LIN_OPMODE_SLAVE: Slave mode (default)
LIN_OPMODE_MASTER: Master mode (if supported see LINCAPABILITIES).
LIN_OPMODE_ERRORS: Reception of error frames enabled

bReserved [in] Reserved. Value must be initialized with 0.

wBitrate [in] Transmitting rate in bits per second. The specified value must be in between the limits
that are determined by the constants LIN_BITRATE_MIN and LIN_BITRATE_MAX.
If the controller is used as slave and supports an automatic bit detection the bit rate
can be determined automatically by setting the value LIN_BITRATE_AUTO.

8.4.3 LINLINESTATUS
The data type describes the current status of the LIN message.

typedef struct _LINLINESTATUS
{

UINT8 bOpMode;
UINT8 bReserved;

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 150 (154)

UINT16 wBitrate;
UINT32 dwStatus;

} LINLINESTATUS, *PLINLINESTATUS;

Member Dir. Description

bOpMode [in] Current operating mode of controller ((see LIN_OPMODE_ inLININITLINE)

bReserved [out] Not used

wBitrate [out] Currently specified transmission rate in bits per second

dwStatus [out] Current status of LIN controller. Value is a logical combination of one or more of the
following constants:
LIN_STATUS_TXPEND: controller is currently transmitting a message to the bus.
LIN_STATUS_OVRRUN: data overflow occurred in the receiving buffer of the
controller:
LIN_STATUS_ININIT: controller is in stopped state.
LIN_STATUS_ERRLIM: overflow of an error counter of the controller occurred.
LIN_STATUS_BUSOFF: controller has shifted to state BUS-OFF.

8.4.4 LINMONITORSTATUS
The data type describes the current status of the LIN message monitor.

typedef struct _LINMONITORSTATUS
{

LINLINESTATUS sLineStatus;
BOOL32 fActivated;
BOOL32 fRxOverrun;
UINT8 bRxFifoLoad;

} LINMONITORSTATUS, *PLINMONITORSTATUS;

Member Dir. Description

sLineStatus [out] Current status of LIN controller. For more information see description of the data
structure LINLINESTATUS.

fActivated [out] Shows if message monitor is active (TRUE) or inactive (FALSE).

fRxOverrun [out] Signalizes an overflow in the receiving buffer with the value TRUE.

bRxFifoLoad [out] Current filling level of receiving FIFO in percentage

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 151 (154)

8.4.5 LINMSGINFO
The data type summarizes different information about LIN messages in a 32 bit value. The value
can be assigned byte by byte or via individual bit fields.

typedef union _LINMSGINFO
{

struct
{

UINT8 bPid;
UINT8 bType;
UINT8 bDlen;
UINT8 bFlags; } Bytes;

struct
{

UINT32 pid : 8;
UINT32 type : 8;
UINT32 dlen : 8;
UINT32 ecs : 1;
UINT32 sor : 1;
UINT32 ovr : 1;
UINT32 ido : 1;
UINT32 res : 4;

} Bits;

} LINMSGINFO, *PLINMSGINFO;

The information of a LIN message can be accessed byte by byte via the structure element Bytes.
The following fields are defined:

Fields Dir. Description

Bytes.bPid [in/out] Protected identifier, see bits.pid

Bytes.bType [in/out] Type of message, see bits-type and bits.ecs

Bytes.bDlen [in/out] Data length, see bits.dlen

Bytes.bFlags [in/out] Different flags, see bits.ecs, bits.sor, bits.ovr and bits.ido

The information of a LIN message can be accessed by the bit via the structure element Bits. The
following bit fields are defined:

Bit field Dir. Description

Bytes.pid [in/out] Protected identifier of the message

Bits.type [in/out] Type of message. For receive messages the following types are defined:

LIN_MSGTYPE_
DATA

Standard message. All regular receiving channels are of this type.
In field bPid is the ID of the message, in field dwTime the
receiving time. The field abData contains depending on the
length (see bits.dlen) the data bytes of the message. In the
master operating mode messages of this type can also be
transmitted. Therefore the ID must be specified in field bPid and
in field abData depending on the length (bits.dlen) the data to
be transmitted. The field dwTime is set to 0. To transmit
exclusively the ID without data Bits.ido is set to 1.

LIN_MSGTYPE_
INFO

Information message. This message type is assigned in the
receiving buffers of all active message monitors if certain events
happen or the status of the controller is changed. The field bPid
of the message contains the value 0xFF. The field abData[0]
contains one of the following values:

Constant Meaning

LIN_INFO_START Controller is started. Field
dwTime contains the relative
starting point (normally 0).

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 152 (154)

Bit field Dir. Description

LIN_INFO_STOP Controller is stopped. Field
dwTime contains value 0.

LIN_INFO_RESET Controller is reset. Field dwTime
contains value 0.

LIN_MSGTYPE_
ERROR

Error message. This message type is generated if a bus error
occurs and is registered in the receiving buffers off all active
message channels, provided that the flag CAN_OPMODE_
ERRORS is set during the initialization of the controller. The field
bPid of the message has the value 0xFF. The time of the event is
noted in field dwTime. The field abData[0] contains one of the
following values:

Constant Meaning

LIN_ERROR_BIT Bit error

LIN_ERROR_CHKSUM Check sum error

LIN_ERROR_PARITY Parity error of identifier

LIN_ERROR_SLNORE Slave does not answer.

LIN_ERROR_SYNC Invalid synchronization field.

LIN_ERROR_NOBUS No bus activity.

LIN_ERROR_OTHER Another, not specified error

The field abData[1] of the message contains the low byte of the
current status (see LINLINESTATUS.dwStatus). The
content of the other data fields is undefined.

LIN_MSGTYPE_
STATUS

Status message. This message type is assigned in the receiving
buffers of all active message channels if the status of the
controller is changed. The field bPid of the message contains the
value 0xFF. The time of the event is noted in field dwTime. The
field abData[0] contains the low byte of the current status. The
content of the other data fields is undefined. (See
LINLINESTATUS.dwStatus)

LIN_MSGTYPE_
WAKEUP

Exclusively for transmit messages. Messages of this type
generate a Wake-Up signal on the bus. The fields dwTime, bPid
and bDlen have no significance.

LIN_MSGTYPE_
TMOVR

Counter overflow. Messages of this type are generated by LIN
messages if an overflow of the 32 bit time stamp takes place. In
field dwTime of the message the time of the event (standard 0)
and in field bDlen the number of timer overflows. The content of
the data fields abData is undefined, the field bPid has the value
0xFF.

LIN_MSGTYPE_
SLEEP

Go-to-Sleepmessage. The fields dwTime, bPid and bDlen have no
significance.
For transmit messages exclusively LIN_MSGTYPE_DATA, LIN_
MSGTYPE_SLEEP and LIN_MSGTYPE_WAKEUP are defined,
other values are not allowed.

Bits.dlen [in/out] Number of valid data bytes in field abData of the message

Bits.ecs [in/out] Enhanced check sum. Bit is set to 1, if it is a message with extended check sum according
to LIN 2.0.

Bits.sor [out] Sender of response. Bit is set in messages that are transmitted by the LIN controller, i. e.
in messages for which the controller has an entry in the response table.

Bits.ovr [out] Data overrun. Bit is set to 1 if the receiving FIFO is crowded after this message is assigned.

Bits.ido [in] ID only. Bit is exclusively in messages of type LIN_MSGTYPE_DATA relevant that are
directly transmitted. If the bit in transmit messages is set to 1 exclusively the ID without
data is transmitted and serves in the master operating mode to send the IDs. Regarding
all other message types this bit has no significance.

Bits.res [in/out] Reserved for further extensions. This field is 0.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

Data Structures 153 (154)

8.4.6 LINMSG
The data type describes the structure of LIN message telegrams.

typedef struct _LINMSG
{

UINT32 dwTime;
LINMSGINFO uMsgInfo;
UINT8 abData[8];

} LINMSG, *PLINMSG;

Member Dir. Description

dwTime In receive messages this field contains the relative receiving point of the
message in timer ticks. The resolution of timer tick can be calculated
with the fields dwClockFreq and dwTscDivisor of structure
LINCAPABILITIES with the following formula:
Resolution[s] = dwTscDivisor / dwClockFreq

uMsgInfo Bit field with information about the message. For detailed description of
bit field see LINMSGINFO.

abData [out] Array for up to 8 data bytes. Number of valid data bytes is determined
by the field uMsgInfo.Bits.dlen.

VCI: C++ Software Design Guide 4.02.0250.20022 1.6 en-US

last page

© 2021 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se 4.02.0250.20022 1.6 en-US / 2021-11-12 / 23707

	1 User Guide
	1.1 Document History
	1.2 Trademark Information
	1.3 Conventions
	1.4 Glossary

	2 System Overview
	2.1 Features and Components
	2.2 Programming Examples
	2.3 Using the VCI Headers

	3 Device Management and Device Access
	3.1 Listing Available Devices
	3.2 Accessing Individual Devices

	4 Communication Components
	4.1 First In/First Out Memory (FIFO)
	4.1.1 Functionality of the Receiving FIFO
	4.1.2 Functionality of the Transmitting FIFO

	5 Accessing the Bus Controller
	5.1 BAL
	5.2 CAN Controller
	5.2.1 Socket Interface
	5.2.2 Message Channels
	5.2.3 Control Unit
	5.2.4 Message Filter
	5.2.5 Cyclic Transmitting List

	5.3 LIN-Controller
	5.3.1 Socket Interface
	5.3.2 Message Monitors
	5.3.3 Control Unit

	6 Error Messages
	7 Interface Description
	7.1 Exported Functions
	7.1.1 VciInitialize
	7.1.2 VciFormatError
	7.1.3 VciGetVersion
	7.1.4 VciCreateLuid
	7.1.5 VciLuidToChar
	7.1.6 VciCharToLuid
	7.1.7 VciGuidToChar
	7.1.8 VciCharToGuid
	7.1.9 VciGetDeviceManager
	7.1.10 VciQueryDeviceByHwid
	7.1.11 VciQueryDeviceByClass
	7.1.12 VciCreateFifo
	7.1.13 VciAccessFifo

	7.2 Interface IUnknown
	7.2.1 QueryInterface
	7.2.2 AddRef
	7.2.3 Release

	7.3 Interfaces of the Device Management
	7.3.1 IVciDeviceManager
	7.3.2 IVciEnumDevice
	7.3.3 IVciDevice

	7.4 Interfaces of the Communication Components
	7.4.1 Interfaces for FIFOs

	7.5 BAL Specific Interfaces
	7.5.1 IBalObject

	7.6 CAN Specific Interfaces
	7.6.1 ICanSocket
	7.6.2 ICanSocket2
	7.6.3 ICanControl
	7.6.4 ICanControl2
	7.6.5 ICanChannel
	7.6.6 ICanChannel2
	7.6.7 ICanScheduler
	7.6.8 ICanScheduler2

	7.7 LIN Specific Interface
	7.7.1 ILinSocket
	7.7.2 ILinControl
	7.7.3 ILinMonitor

	8 Data Structures
	8.1 VCI Specific Data Types
	8.1.1 VCIID
	8.1.2 VCIVERSIONINFO
	8.1.3 VCIDEVICEINFO
	8.1.4 VCIDEVICECAPS

	8.2 BAL Specific Data Types
	8.2.1 BALFEATURES
	8.2.2 BALSOCKETINFO

	8.3 CAN Specific Data Types
	8.3.1 CANCAPABILITIES
	8.3.2 CANCAPABILITIES2
	8.3.3 CANBTRTABLE
	8.3.4 CANBTP
	8.3.5 CANBTPTABLE
	8.3.6 CANINITLINE
	8.3.7 CANINITLINE2
	8.3.8 CANLINESTATUS
	8.3.9 CANLINESTATUS2
	8.3.10 CANCHANSTATUS
	8.3.11 CANCHANSTATUS2
	8.3.12 CANSCHEDULERSTATUS
	8.3.13 CANSCHEDULERSTATUS2
	8.3.14 CANMSGINFO
	8.3.15 CANMSG
	8.3.16 CANMSG2
	8.3.17 CANCYCLICTXMSG
	8.3.18 CANCYCLICTXMSG2

	8.4 LIN Specific Data Types
	8.4.1 LINCAPABILITIES
	8.4.2 LININITLINE
	8.4.3 LINLINESTATUS
	8.4.4 LINMONITORSTATUS
	8.4.5 LINMSGINFO
	8.4.6 LINMSG

