

Handbuch

Neigungssensoren GIM140R mit CANopen® Schnittstelle

Inhalt

1	Dokumentenhistorie	4
2	Sicherheits- und Betriebshinweise	5
3	Produktzuordnung	6
4	System-Überblick	7
4.1	Allgemein	7
4.2	Unterstützte Profile	
4.3	Unterstützte CANopen-Dienste	7
5	NMT-Dienste (Netzwerkmanagement)	7
5.1	Unterstützte Befehle	7
5.2	Boot-up-Nachricht	7
6	SDO-Dienste (Servicedaten)	8
6.1	Allgemein	8
6.2	Parameter speichern/laden	8
6.2.1	Speichern	8
6.2.2	Laden	8
6.2.3	Zuverlässiges nichtflüchtiges Speichern	8
6.2.4	Unterbrochene Aktualisierung der Position	8
6.3	Beispiele für das Schreiben von Parametern	8
6.3.1	Wie man Daten speichert	8
6.3.2	So ändern Sie die Node-ID	8
6.3.3	So ändern Sie die Baudrate	8
6.3.4	So ändern Sie die Winkelauflösung	9
6.3.5	Betriebsparameter (6011h/6111h)	9
6.3.6	Offset-Parameter und Berechnung	9
6.3.7	Konfiguration digitaler Tiefpassfilter (2603h)	10
7	PDO-Dienste (Prozessdaten)	10
7.1	Allgemein	
7.2	PDO-Übertragungsarten	10
7.3	COB-ID	10
7.4	PDO-Zuordnung	11
7.4.1	Mapping Objekte	11
7.4.2	Default Mapping des redundanten Neigungssensors	11
7.5	Timing	12
7.6	Ausnahmen von der genauen Berechnung von Prozessdaten	12
8	EMCY-Dienste (Emergency)	
8.1	Allgemein	12
8.2	COB-ID	12
8.3	Emergency Nachricht	12
8.4	Fehlerregister	12
8.4.1	Kommunikationsfehler	
8.4.2	Generischer Fehler	
8.5	Fehlercodes / EMCY-Meldungen	13
9	Heartbeat-Dienst	13
9.1	Allgemein	
9.2	COB-ID	
9.3	Timing / Zykluszeit	13

10	LSS Layer Setting Services	14
10.1	LSS-Adressierung	14
10.2	Unterstützte LSS-Befehle	14
11	Objektverzeichnis	17
11.1	Kommunikationsparameter (CiA DS-301)	17
11.2	Hersteller-spezifische Parameter	18
11.3	Geräteprofil-spezifische Parameter (Neigungssensorprofil CiA DS 410)	
12	Anschlussbelegung	21
12.1	Kabel mit Stecker M12, 5-polig	21
12.2	Kabel mit Stecker 2xM12, 5-polig	21
12.3	Kabel	21

1 Dokumentenhistorie

Dieses Dokument kann jederzeit geändert werden. Um die jeweils aktuellste Version zu erhalten, laden Sie es bitte auf www.baumer.com herunter.

Dokument Index	Datum	Firmware- Version	CANopen- Autor Revisionsnummer Obj. 1018		Änderungen
0001 (1.0)	20.10.2017	Von V01-30	0000.0000h	zazg Ursprüngliche Version ersetzt alle Dokumentenentwürfe	
0002 (1.1)	09/08/2018	Von V01-30	0000.0000h	gia	Cut-Off-Frequenz zur Beschreibungstabelle der Digitalfilter-Konfiguration (2603h) hinzugefügt
0003 (1.2)	20.12.2018	Von V01-30	0000.0000h	zazg	PDO-Format aktualisiert
0004 (1.3)	01.03.2019	Von V01-30	0000.0000h	gua	Abschnitt 5.3.7, alte Filtertabelle entfernt
0005 (1.4)	08.03.2019	Von V01-30	0000.0000h	zazg	Filterwerte aktualisiert, minimale PDO- Aktualisierungszeit, PDO-Mapping
0006 (1.5)	12.04.2019	Von V01-30	0000.0000h	zazg	Filterwerte aktualisiert, minimale PDO- Aktualisierungszeit
0007 (1.6)	28.05.2019	Von V01-30	0000.0000h	fgin	Aktualisiertes Objektverzeichnis, Filtereinstellungen
0008 (1.7)	01.08.2019	Von V01-30	0000.0000h	zazg	
0009 (1.8)	13.09.2019	Von V01-30	0000.0000h	zazg	Fehlerkorrektur im voreingestellten SDO- Abschnitt 5.3.6
0010 (1.9)	09.10.2019	Von V01-30	0000.0000h	zazg	Filter-MEMS-SDO und Abschnitt 5.3.8 hinzugefügt
0011 (1.91)	13.11.2019	Von V01-30	0000.0000h	zazg	Notwendigkeit, das Filter-MEMS-SDO und das RW-Dummy-Byte zu entsperren entfernt
0012 (2.0)	15.05.2020	Von V01-30	0000.0000h	zazg	Standardeinstellung des Update-Filters definiert
0013 (2.1)	22.06.2020	Von V01-30	0000.0000h	zazg	CiA-Profil-Informationen aktualisiert
0014	08.09.2020	Von V01-30	0000.0000h	mis / gua	 Firmware-Version und CANopen-Revisionsnummer eingeführt Handbuch-Dateiname und EDS-Dateiname angepasst, Vendor-ID angepasst Errata / Sprach- / Formatkorrekturen In Objektliste Attribut "SAVE" ergänzt.

Haftungsausschluss

Diese Schrift wurde mit grosser Sorgfalt zusammengestellt. Fehler lassen sich jedoch nicht immer vollständig ausschliessen. Baumer übernimmt daher keine Garantien irgendwelcher Art für die in dieser Schrift zusammengestellten Informationen. In keinem Fall haftet Baumer oder der Autor für irgendwelche direkten oder indirekten Schäden, die aus der Anwendung dieser Informationen folgen.

Wir freuen uns jederzeit über Anregungen, die der Verbesserung dieses Handbuchs dienen können.

Erstellt von: Sensor Systems Srl Chiari, Italy

2 Sicherheits- und Betriebshinweise

Bestimmungsgemässer Gebrauch

- Der Neigungssensor ist ein Präzisionsmessgerät zur Bestimmung von Winkelpositionen und zur Versorgung des nachgeschalteten Gerätes mit Messwerten in Form von elektronischen Ausgangssignalen. Der Neigungssensor darf für keinen anderen Zweck verwendet werden.
- Sofern dieses Produkt nicht speziell gekennzeichnet ist, darf es nicht für den Betrieb in explosionsgefährdeten Umgebungen verwendet werden. Stellen Sie durch geeignete Sicherheitsmaßnahmen sicher, dass im Falle eines Fehlers oder Ausfalls des Neigungssensors keine Gefahr für Personen oder Schäden am System oder den Betriebseinrichtungen entsteht.

Qualifikation des Personals

- Die Installation und Montage dieses Produkts darf nur von einer Person durchgeführt werden, die in Elektronik und Feinmechanik qualifiziert ist.
- Beachten Sie auch die Betriebsanleitung des Maschinenherstellers.

Sicherheitshinweise

- Prüfen Sie vor der Inbetriebnahme alle elektrischen Anschlüsse.
- Wenn Installation, elektrischer Anschluss oder andere Arbeiten am Neigungssensor oder an der Anlage nicht korrekt ausgeführt werden, kann dies zu einer Fehlfunktion oder einem Ausfall des Neigungssensors führen.
- Es müssen Vorkehrungen getroffen werden, um durch geeignete Sicherheitsvorkehrungen jedes Risiko von Personenschäden, Schäden an der Anlage oder an den Betriebsmitteln infolge des Ausfalls oder der Fehlfunktion des Neigungssensors aus zu schließen.
- Der Neigungssensor darf nicht außerhalb der angegebenen Grenzwerte betrieben werden (siehe detaillierte Produktdokumentation).

Die Nichtbeachtung der Sicherheitshinweise kann zu Fehlfunktionen, Personen- oder Sachschäden führen.

Transport, Lagerung und Entsorgung

- Neigungssensor in der Originalverpackung transportieren oder lagern.
- Lassen Sie Neigungssensoren niemals fallen und setzen Sie sie niemals größeren Vibrationen aus.
- Der Neigungssensor enthält elektronische Komponenten. Bei seiner Entsorgung sind die örtlichen Umweltrichtlinien zu beachten.

Montage

- Vermeiden Sie Stöße oder Schläge auf das Gehäuse.
- Vermeiden Sie jegliche Verdrehung oder Torsion des Gehäuses.
- Öffnen Sie den Neigungssensor nicht und nehmen Sie keine mechanischen Veränderungen an ihm vor.

Das Gerätegehäuse oder elektronische Komponenten können beschädigt werden. In diesem Fall kann ein sicherer und zuverlässiger Betrieb nicht garantiert werden.

Elektrische Inbetriebnahme

- Verändern Sie den Neigungssensor nicht elektrisch und entfernen Sie die Stromversorgung, während Sie ihn elektrisch anschließen.
- Der elektrische Anschluss darf nicht unter Spannung angebracht oder entfernt werden.
- Stellen Sie sicher, dass die gesamte Anlage in Übereinstimmung mit den EMV-Anforderungen installiert wird.
 Die Installationsumgebung und die Verkabelung beeinflussen die elektromagnetische Verträglichkeit des Neigungssensors. Installieren Sie den Neigungssensor und die Versorgungskabel getrennt oder in großer Entfernung von Kabeln mit hoher Störaussendung (Frequenzumrichter, Schütze usw.).
- Wenn Sie mit Verbrauchern arbeiten, die hohe Störaussendungen haben, stellen Sie eine separate Stromversorgung für den Neigungssensor zur Verfügung.
- Nicht verwendete Ausgänge dürfen nicht angeschlossen werden.

Die Nichtbeachtung dieser Hinweise kann zu Fehlfunktionen, Sach- oder Personenschäden führen.

Ergänzende Informationen

- Dieses Handbuch ist als Ergänzung zu sonst vorhandener Dokumentation (Kataloge, Datenblätter und Montageanleitungen) gedacht.
- Das Handbuch muss unbedingt vor der ersten Inbetriebnahme des Geräts gelesen werden.

3 Produktzuordnung

Produkt	Produktcode	Geräte-Name	EDS-Datei
Neigungssensor	0x0540	GIM140R	GIM140R_0x0540_V00.00.eds
Neigungssensor - redundante	0x0540	GIM140R	GIM140R_0x0540_V00.00.eds
Ausführung			

4 System-Überblick

4.1 Allgemein

Der Neigungssensor ist ein Messsystem mit CANopen-Schnittstelle. Er unterstützt die Skalierung und Voreinstellung unter Berücksichtigung des CANopen-Geräteprofils für Neigungssensoren CiA 410 der "CAN in Automation" (CiA) Nutzerorganisation.

4.2 Unterstützte Profile

Folgende CANopen-Profile werden unterstützt:

- CiA 301 / Version 4.2 (Kommunikation)
- CiA 410 / Version 2.0 (Geräteprofil für Neigungssensoren)
- CiA 305 / Version 3.0 (LSS Layer Setting Services)

4.3 Unterstützte CANopen-Dienste

Folgende CANopen-Dienste werden unterstützt:

- 1 Netzwerk-Management (nach CiA 301)
- 1 SDO-Server (gemäß CiA 301)
- 2 TPDOs (gemäß CiA 301/ CiA 410)
- 1 Notfallproduzent (gemäß CiA 301 / CiA 410)
- 1Heartbeathersteller (nach CiA 301)

5 NMT-Dienste (Netzwerkmanagement)

5.1 Unterstützte Befehle

Folgende NMT-Befehle werden unterstützt:

- NMT Start
- NMT Pre-Operational
- NMT Stop
- NMT Reset
- NMT Communication Reset

Es gibt keinen Unterschied zwischen NMT Reset und NMT Communication-Reset.

5.2 Boot-up-Nachricht

NMT-Nachricht senden, um das Gerät zu initialisieren

COB-ID	Len	D0	D1
0x000	2	0x01	ID

Hinweis: ID kann für die Broadcast-Initialisierung 0 sein

Nach einem Einschalten oder NMT Reset sendet das Gerät eine Boot-up-Nachricht.

COB-ID	Byte 0
700h + Node-ID	00

6 SDO-Dienste (Servicedaten)

6.1 Allgemein

Das Gerät unterstützt 1 SDO-Server (beschleunigtes Lesen/Schreiben, segmentiertes Lesen)

6.2 Parameter speichern/laden

Das Gerät unterstützt das Speichern von Parametern in einem nichtflüchtigen Speicher (EEPROM).

6.2.1 Speichern

Das Schreiben von "save" auf 0x1010-x speichert die entsprechenden Objekte im nichtflüchtigen Speicher. Nach einem Reset oder Einschalten werden die Parameter aus dem nichtflüchtigen Speicher geladen. Die SDO-Anforderung an 1010h-x wird nach dem Speichern beantwortet.

6.2.2 Laden

Das Schreiben von "load" in 1011h-x stellt die entsprechenden Objekte wieder her. Die Parameter werden nach einem Reset oder Einschalten wiederhergestellt.

6.2.3 Zuverlässiges nichtflüchtiges Speichern

Um ein zuverlässiges nichtflüchtiges Speichern im laufenden Betrieb zu gewährleisten, muss die Zeit zwischen einem Zugriff auf Objekt 1010h-x oder 1011h-x und einem Reset oder Einschalten mindestens 600 msec betragen.

6.2.4 Unterbrochene Aktualisierung der Position

Save/Load-Operationen unterbrechen kurzzeitig die Aktualisierung der Position.

6.3 Beispiele für das Schreiben von Parametern

6.3.1 Wie man Daten speichert

Siehe Abschnitt 5.2.1 bzw. SDO-Nachricht senden

	0.01.07.0000111.	ololio / Mooriilitti olali vaati oa oli tuoliiloitti ooli uuti													
ĺ	COB-ID	Len	D0	D1	D2	D3	D4	D5	D6	D7					
ĺ	0x600 + ID	8	0x23	0x10	0x10	0x01	0x73	0x61	0x76	0x65					

6.3.2 So ändern Sie die Node-ID

Senden der SDO-Nachricht

COB-ID	Len	D0	D1	D2	D3	D4	D5	D6	D7
0x600 + ID	8	0x2F	0x01	0x21	0x00	ID	0x00	0x00	0x00

Hinweis: Werte unter 1 oder über 127 werden nicht akzeptiert und die bestehende Einstellung bleibt gültig. Speichern von Einstellungen / neuen Einträgen im EEPROM erfolgt mit dem Befehl SAVE (siehe Par. "Wie man Daten speichert"), gefolgt von einem Aus- und Einschalten.

6.3.3 So ändern Sie die Baudrate

Senden der SDO-Nachricht

Condon dor CDC readminent												
COB-ID	Len	D0	D1	D2	D3	D4	D5	D6	D7			
0x600 + ID	8	0x2F	0x00	0x21	0x00	BR	0x00	0x00	0x00			

Hinweis: Werte über 7 werden nicht akzeptiert und die bestehende Einstellung bleibt gültig. Speichern von Einstellungen / neuen Einträgen im EEPROM erfolgt mit dem Befehl SAVE (siehe Par. "Wie man Daten speichert"), gefolgt von einem Aus- und Einschalten.

6.3.4 So ändern Sie die Winkelauflösung

Dieses Objekt enthält die Auflösung des Slope Long16-Bit (Objekt 6010h) und des Slope Lateral16-Bit (Objekt 6020h) in Schritten von 0,001°. Speichern von Einstellungen / neuen Einträgen im EEPROM erfolgt mit dem Befehl SAVE (siehe Par. "Wie man Daten speichert"), gefolgt von einem Aus- und Einschalten.

Diese Auflösung in Schritten von 0,001° gilt auch für die entsprechenden 32-Bit-Wertobjekte (6110h, 6120h). Bei niedriger Auflösung beträgt der Wert 10d. Im Falle einer hohen Auflösung beträgt der Wert 1d. Die folgende Tabelle beschreibt alle möglichen Auflösungen:

Auflösung (6000h)							
Wert Beschreibung							
01h (1d)	0,001°						
Ah (10d)	0,01°						
64h (100d)	0,1°						
3E8h (1000d)	1°						

6.3.5 Betriebsparameter (6011h/6111h)

Der oben erwähnte Betriebsparameter beeinflusst die Ausgangsneigung in folgender Weise: Bit-Maske:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			S	i				
Default			1	0				

i = Invertierung (0 = Invertierung nicht aktiviert; 1 = Invertierung aktiviert)

s = Skalierung (0 = Skalierung nicht aktiviert; 1 = Skalierung aktiviert)

Skalierung bedeutet, dass die folgende Gleichung angewendet wird:

Neigung = A + B + C

wo

A ist ein physikalisch gemessener Winkel;

B ist ein differentieller Steigungsversatz;

C ist ein Steigungsversatz.

Die Betriebsparameter werden für die entsprechende Steilheit angewendet (d.h. 6011h Betriebsparameter beeinflusst Slope Long 6010h).

Die 16-Bit- und 32-Bit-Werte sind intern miteinander verbunden (d.h. eine Änderung des Betriebsparameters bei 6011h ändert den Betriebsparameter bei 6111h)

6.3.6 Offset-Parameter und Berechnung

Dieses Objekt gibt den Anwendungsversatz bzw. Offset für Neigung / Slope an. Der Wert ist in Winkelgraden mit der in Objekt 6000h angegebenen Auflösung anzugeben. Die folgende Formel wird angewendet:

Slope Offset = A -B -C

Wobei:

A ist ein voreingestellter Wert für die Steigung bei tacc;

B ist eine physikalische Steigung, die bei tacc gemessen wird;

C ist ein differentieller Steigungsversatz und tacc = Zeit beim Zugriff auf ein voreingestelltes Objekt

Die 16-Bit- und 32-Bit-Werte sind intern miteinander verbunden (d.h. eine Änderung des differentiellen Offsets bei 6014h ändert den differentiellen Offset bei 6114h)

 $\hbox{d.h.}: Senden \ Sie \ diese \ SDO-Nachricht, \ um \ den \ Nullpunkt \ der \ X-Achse \ oder \ Z-Achse \ (1-dim.) \ zu \ setzen:$

COB-ID	Len	D0	D1	D2	D3	D4	D5	D6	D7
0x600 + ID	8	0x2B	0x12	0x60	0x00	0x00	0x00	0x00	0x00

d.h.: Senden Sie diese SDO-Nachricht, um den Nullpunkt der Y-Achse zu setzen:

COB-ID	Len	D0	D1	D2	D3	D4	D5	D6	D7
0x600 + ID	8	0x2B	0x22	0x60	0x00	0x00	0x00	0x00	0x00

6.3.7 Konfiguration Tiefpassfilter (2603h)

Die Grenzfrequenz des digitalen Tiefpassfilters kann über das Objekt 2603h eingestellt werden. Die Grenzfrequenz muss mit einer Auflösung von 0,1 Hz in das Gerät geschrieben werden (d.h. eine Grenzfrequenz von 5 Hz muss durch Schreiben von 50d in das Gerät konfiguriert werden).

Die folgenden Grenzfrequenzen sind möglich:

Konfiguration des digitalen Filters (2603h)						
Grenzfrequenz	Beschreibung					
0	Digitaler Filter deaktiviert					
0,11 Hz	In Schritten von 0,1 Hz					
125 Hz	In Schritten von 1 Hz					

Die Default-Grenzfrequenz des Tiefpassfilters bei Auslieferung des Geräts beträgt 2 Hz.

7 PDO-Dienste (Prozessdaten)

7.1 Allgemein

Das Gerät unterstützt TPDO1 und TPDO2. PDOs werden nur im NMT-Betriebsmodus übertragen.

7.2 PDO-Übertragungsarten

Die folgenden Übertragungsarten werden unterstützt (Objekt 180x-2):

- Synchrone Übertragung (1-240)
- Asynchrone Übertragung (255)
- Hersteller-Übertragung (254)

Beide PDOs unterstützen alle Übertragungsarten.

Übertragungsart 255 und 254: Das PDO wird zeitgesteuert übertragen. Das Zeitintervall zwischen 2 PDOs kann im

Objekt 180xh-5 angepasst werden.

Übertragungsart 1-240: Das PDO wird nach dem n-ten Sync-Frame übertragen.
Übertragungsart 1: Das PDO wird nach einem Sync-Frame übertragen.
Übertragungsart 2: Das PDO wird nach zwei Sync-Frames übertragen.

usw.

7.3 COB-ID

Die COB-ID für beide PDOs ist änderbar (in Objekt 180xh-1)

Das Format des TPDO ist:

TPD01

COB-ID	Len	D0	D1	D2	D3	D4	D5
0x180 + ID	8	T0a	T1a	P0a	P1a	P0b	P1b

Wobei:

T stellt die Temperatur des Geräts in Grad dar.

P ist der tatsächliche Neigungswert in Grad oder Zehntel Grad (abhängig von den Auflösungseinstellungen) und die Suffixe "a" und "b" beziehen sich bei zweidimensionalen Anwendungen auf die Achsen "X" und "Y". Das Suffix "a" kann bei 1-dimensionalen Geräten auch den Winkel von 0...360° angeben.

Interpretationsbeispiel

Unter Berücksichtigung einer Auflösung von 0,1°:

P0 = 0x84, P1 = 0x03

Das bedeutet P = 0x0000000384 (900 dezimal) = 90°.

Die Achse 'b' wird in ähnlicher Weise dargestellt.

7.4 PDO-Zuordnung

Der Neigungssensor unterstützt dynamisches PDO-Mapping.

7.4.1 Mapping Objekte

Die folgenden Objekte sind abbildbar (siehe Objektverzeichnis für weitere Spezifikationen):

Mapping-Inhalt	Mapping-Eintrag	Beschreibung
Winkel 1 Wert Invers	0x21200120	Objekt 2120h, Subindex01h, Datenlänge 32 Bit
Winkel 2 Wert Invers	0x21200220	Objekt 2120h, Subindex02h, Datenlänge 32 Bit
Firmware-Version	0x21950010	Objekt 2195h, Subindex00h, Datenlänge 16 Bit
String Kunde	0x21960020	Objekt 2196h, Subindex00h, Datenlänge 32 Bit
Dummy-Doppelwort	0x21970020	Objekt 2197h Subindex00h, Datenlänge 32 Bit
Dummy-Wort	0x21980010	Objekt 2198h Subindex00h, Datenlänge 16 Bit
Dummy-Byte	0x21990008	Objekt 2199h Subindex00h, Datenlänge 8 Bit
X-Achse Rohbeschleunigung	0x5FF00110	Objekt 5FF0h Subindex01h, Datenlänge 16 Bit
Y-Achse Rohbeschleunigung	0x5FF00210	Objekt 5FF0h Subindex02h, Datenlänge 16 Bit
Z-Achse Rohbeschleunigung	0x5FF00310	Objekt 5FF0h Subindex03h, Datenlänge 16 Bit
X-Achse gefilterte Beschleunigung	0x5FF00410	Objekt 5FF0h Subindex04h, Datenlänge 16 Bit
Y-Achse gefilterte Beschleunigung	0x5FF00510	Objekt 5FF0h Subindex05h, Datenlänge 16 Bit
Z-Achse gefilterte Beschleunigung	0x5FF00160	Objekt 5FF0h Subindex06h, Datenlänge 16 Bit
Slope Long 16-Bit-Winkel 1	0x60100010	Objekt 6010h Subindex00h, Datenlänge 16 Bit
Slope Long 32-Bit-Winkel 1	0x61100020	Objekt 6110h Subindex00h, Datenlänge 32 Bit
Slope Lateral 16-Bit-Winkel 1	0x60200010	Objekt 6020h Subindex00h, Datenlänge 16 Bit
Slope Lateral 32-Bit-Winkel 1	0x61200020	Objekt 6120h Subindex00h, Datenlänge 32 Bit
Temperatur	0x65110010	Objekt 6511h Subindex00h, Datenlänge 16 Bit

So ändern Sie das PDO-Mapping in folgender Reihenfolge: Deaktivieren Sie zuerst das Mapping, schreiben Sie 0 auf 0x1A0x-0, schreiben Sie den gewünschten Mapping-Eintrag, schreiben Sie die Anzahl der PDO-Inhalte auf 0x1A0x-0 und aktivieren Sie das PDO wieder.

7.4.2 Default Mapping des redundanten Neigungssensors

Die Mappings für beide PDOs sind die gleichen. Die Position wird in Byte 0...3übertragen. TPDO1

ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
181h	8	xx	xx	xx	xx	VV	VV

2-dimensional:

Byte 0..1: Temperatur (Objekt6511h-0)

Byte 2..3: Achse X (Objekt 6010h-0)

Byte 4..5: Achse Y (Objekt 6020h-0)

1-dimensional:

Byte 0..1: Temperatur (Objekt6511h-0)

Byte 2..3: Achse X/Vertikal (Objekt 6010h-0)

7.5 Timing

Die minimale Zykluszeit für TPDOs beträgt 20 msec.

7.6 Ausnahmen von der genauen Berechnung von Prozessdaten

Die folgenden Operationen können die genaue Berechnung von Prozessdaten wie Position, Geschwindigkeit, Warnungen und Alarme kurzzeitig unterbrechen:

- Operationen im nichtflüchtiger Speicher
- Ändern der Skalierungsparameter

8 EMCY-Dienste (Emergency)

8.1 Allgemein

Wenn in dem Gerät ein Fehler auftritt, gibt das Gerät eine Emergency Nachricht aus und setzt die entsprechenden Bits im Fehlerregister (Objekt 1001h).

Fehlercodes sind über das Fehlerfeld (Objekt 1003h-x) zugänglich. Eine Historie von maximal 8 Fehlercodes wird im Fehlerfeld gespeichert.

8.2 **COB-ID**

Die COB-ID für die Emergency Nachricht kann im Objekt 1014h geändert werden.

Standardwert: 80h + Node-ID

Node-ID: 9

Änderungen werden sofort übernommen.

Die COB-ID wird intern als Differenz zur Standard-COB-ID gespeichert. Beispiel:

Node-ID: 4 COB-ID Emergency: 84h (Defaultwert)

COB-ID Emergency: 87h (vom Benutzer geändert) COB-ID Emergency: 89h (automatisch angepasst)

8.3 Emergency Nachricht

Die Emergency Nachricht wird übermittelt, wenn ein Fehler im Fehlerregister angezeigt wird.

COB-ID	DLC	Byte0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
80h+Node-ID	8	Fehlero	ode	Fehlerregister	-	-	_	-	_
CONTINUE ID		1 0111010	ouo	(Objekt 1001h)					

8.4 Fehlerregister

Fehlerregister (Objekt 1001h)								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Hersteller-Fehler	-	-	Kommunikationsfehler				Generischer Fehler	

8.4.1 Kommunikationsfehler

Kommunikationsfehler werden angezeigt, wenn die internen CAN-Nachrichtenpuffer überfüllt sind oder sich fehlerhafte CAN-Frames auf dem Bus befinden. Nach einem Kommunikationsfehler wechselt das Gerät in den Pre-Operational-Modus.

8.4.2 Generischer Fehler

Für alle anderen Fehler wird ein allgemeiner Fehler angezeigt.

Ein spezifischer Alarm des Neigungssensors oder eine Warnung führt ebenfalls zu einem allgemeinen Fehler.

Nach einem allgemeinen Fehler wechselt das Gerät in den Pre-Operational-Modus.

8.5 Fehlercodes / EMCY-Meldungen

Die folgenden Fehlercodes werden vom Gerät generiert:

Fehlercode	Bedeutung		
0x0000000000000000	Fehler zurückgesetzt oder kein Fehler		
0x0010010000000000	Generischer Fehler		
0x1081110000000000	CAN RX-Überlauf		
0x1082110000000000	PDO aufgrund eines Längenfehlers nicht verarbeitet		

9 Heartbeat-Dienst

9.1 Allgemein

Das Gerät unterstützt einen Heartbeat Producer gemäß CiA 305.

Beispiel für ein Heartbeat-Protokoll:

COB-ID	Daten/Remote	Byte 0
701h	D	7Fh(127d)

Die Heartbeat-Nachrichten bestehen aus der COB-ID und einem Byte. In diesem Byte wird der NMT-Status geliefert.

0: BootUp Meldung4: Stopped Mode5: Operational Mode

127: Pre-Operational Mode

Mit anderen Worten, der Sensor befindet sich im Pre-operational Mode (7Fh = 127).

9.2 COB-ID

Die COB-ID für die Heartbeat-Nachricht ist 700h + Node-ID.

9.3 Timing / Zykluszeit

Die minimale Zykluszeit für Heartbeat-Nachrichten beträgt 25 ms

10 LSS Layer Setting Services

Im Frühjahr 2000 entwarf die CiA das LSS Layer Setting Services and Protocol, beschrieben im CiA Draft Standard Proposal 305 (LSS).

Bei Auslieferung besitzt der Neigungssensor die Default-Einstellungen Node-ID 1 und Baudrate 250 kBaud.

Mit LSS können mehrere Sensoren mit der gleichen Node-ID an das Bussystem angeschlossen werden. Um die Adressierung einzelner Sensoren zu ermöglichen, wird LSS verwendet.

Jeder Sensor ist mit einer eigenen, eindeutigen Seriennummer versehen und wird mit LSS über diese Nummer angesprochen. Mit anderen Worten, eine optionale Anzahl von Sensoren mit derselben Node-ID kann an ein Bussystem angeschlossen und dann über LSS initialisiert werden. Sowohl die Node-ID als auch die Baudrate können zurückgesetzt werden. LSS kann nur ausgeführt werden im

Stopped Mode

10.1 LSS-Adressierung

Der benötigte Wert für die LSS-Adressierung ist die Seriennummer des Sensors. Diese Seriennummer ist aufgedruckt auf einem Etikett auf dem Gehäuse des Neigungssensors.

10.2 Unterstützte LSS-Befehle

- Zustand global umschalten / Switch mode global
- Zustand selektiv umschalten / Switch mode selective
- Node-ID konfigurieren / Configure node ID protocol
- Bit Timing konfigurieren / Configure bit timing parameters
- Konfiguration speichern / Store configuration
- Seriennummer auslesen / Inquire identity serial number
- Node-ID auslesen / Inquire identity node-ID

Struktur der Nachricht COB-ID:

Consumer -> Producer: 2021 = 7E5h Consumer <- Producer: 2020 = 7E4h

Nach der COB-ID wird ein LSS Command Specifier übertragen.

Danach folgen bis zu sieben angehängte Datenbytes.

COB-ID	CS	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	
--------	----	--------	--------	--------	--------	--------	--------	--------	--

Zustand global umschalten / Switch state global

7E5h ->	04h	Modus	reserviert
---------	-----	-------	------------

Zustand: 0 -> Betriebsart

1 -> Konfigurationsmodus

Zustand selektiv umschalten / Switch mode selective

Das folgende Verfahren kann verwendet werden, um einen bestimmten Sensor im Bussystemanzusprechen.

7E5h ->	40h	Anbieter-ID	reserviert
7E5h ->	41h	Produktcode	reserviert
7E5h ->	42h	Revisionsnummer	reserviert

7E5h ->	43h	Seriennummer	reserviert
7E5h ->	44h	Zustand / Mode	reserviert

Anbieter-ID : ECh

Produktcode : Interner Produktcode für den jeweiligen Sensor : Aktuelle Revisionsnummer des Sensors Revisionsnummer Seriennummer : Eindeutige, fortlaufende Seriennummer

Zustand : Die Antwort des Sensors ist der neue Zustand (0=Betriebsmodus; 1=Konfigurationsmodus)

Node-ID konfigurieren / Configure node ID

7E5h->	11h	Node-ID	reserviert			
	•					
7E4h<	11h	ErrCode	Specific error	reserviert		

: Die neue Node-ID des Neigungssensors Node-ID

: 0=OK; 1=Node-ID außerhalb des Bereichs; 2..254=reserviert; 255 -> Spezifischer Fehler ErrCode

Specific error : Wenn Fehlercode=255 -> anwendungsspezifischer Fehlercode.

Bit Timing konfigurieren / Configure bit timing parameters

7E5h ->	13h	Table Sel	Table Ind	reserviert
7E4h<	13h	ErrCode	Specific error	reserviert

Table Sel : Wählt das Bit : Standard-CiA-Bit-Zeittabelle Zeittafel 0

1..127 Reserviert für CiA

128..255: Herstellerspezifische Tabellen

Table Ind : Bit Timing-Eintrag in der ausgewählten Tabelle (siehe Tabelle unten).

ErrCode : 0=OK; 1=Bit Timing außerhalb Bereich; 2...254=reserviert; 255 -> Spezifischer Fehler

Specific error : Wenn Fehlercode=255 -> Anwendungsspezifischer Fehlercode.

Konfiguration speichern / Store configuration

Dieses Protokoll speichert die Konfigurationsparameter im EEPROM.

7E5h ->	17h	reserviert				
7E4h<	17h	ErrCode	Specific error	reserviert		

ErrCode : 0=OK; 1=Speicherung nicht unterstützt; 2=Zugriffsfehler; 3...254=reserviert;

255 -> Spezifischer Fehler

: Wenn Fehlercode=255 -> Anwendungsspezifischer Fehlercode. Specific error

Aktivieren der Bit-Timing-Parameter

Die neuen Bit-Timing-Parameter werden mit dem Command Specifier 15h aktiviert.

7E5h ->	15h	Schaltverzögerung	reserviert
---------	-----	-------------------	------------

Switch Delay : Rücksetzverzögerung im Producer in msec.

: Nach der Verzögerung meldet sich der Sensor mit der neuen Baudrate an.

Vendor-ID anfordern

Anfordern der Vendor-ID eines ausgewählten Sensors

7E5h ->	5Ah	reserviert		
7E4h <-	5Ah	32-Bit Vendor-ID	reserviert	

Vendor -ID : = ECh

Produktcode anfordern

Produktcode eines ausgewählten Sensors anfordern

7E5h ->	5Bh	reserviert	
7E4h <-	5Bh	Produktcode	reserviert

Produktcode : Herstellerabhängiger Produktcode des Sensors

Revisionsnummer anfordern

Anfordern der Revisionsnummer eines ausgewählten Sensors

7E5h ->	5Ch	reserviert				
7E4h <-	5Ch	32-Bit-Revisionsnummer	reserviert			

Revisionsnummer : Gegenwärtige Revisionsnummer des Sensors

Seriennummer anfordern

Seriennummer eines ausgewählten Sensors anfordern

7E5h ->	5Dh	reserviert	
7E4h <-	5Dh	32-Bit-Seriennummer	reserviert

Seriennummer : Eindeutige fortlaufende Seriennummer des Sensors

Range request

Innerhalb eines bestimmten Bereichs kann auch nach Sensoren gesucht werden. Dazu werden nacheinander die folgenden Objekte gesendet:

7E5h ->	46h	Vendor-ID	reserviert
7E5h ->	47h	Produktcode	reserviert
			_
7E5h ->	48h	Revisionsnummer LOW	reserviert
7E5h ->	49h	Revisionsnummer HIGH	reserviert
<u> </u>			
7E5h ->	4Ah	Seriennummer LOW	reserviert
7E5h ->	4Bh	Seriennummer HIGH	reserviert

Jeder Sensor mit den relevanten Parametern meldet sich mit der folgenden Meldung an:

7E4h <- 4Fh reserviert

11 Objektverzeichnis

Die folgenden Tabellen bieten eine Zusammenfassung aller SDO-Objekte, die vom Neigungssensor unterstützt werden.

Objekt Objekt-Nummer Name Objekt-Name

Format U/I = vorzeichenlos/ganzzahlig, Nr. = Anzahl Bits, ARR = Array, REC = Datensatz, STR = Zeichenfolge

Zugriff ro = nur lesen, wo = nur schreiben, rw = lesen und schreiben, m = unterstützt Mapping

Default Standardwert bei erster Initialisierung

Save X = kann im EEPROM / nichtflüchtigen Speicher gespeichert werden

11.1 Kommunikationsparameter (CiA DS-301)

Objekt	Sub- Index	Name	Format	Zu- griff	Default	Save	Beschreibung
0x1000	0	Device type	U32	ro	0x0004019A		CiA410
0x1001	0	Error register	U8	ro	0x00		Bitkodiert nach Profil CiA 410 0x00: kein Fehler 0x01: allgemeiner Fehler 0x10: Kommunikationsfehler 0x20: Geräteprofil-spezifischer Fehler 0x80: Herstellerspezifischer Fehler
0x1003	0	Predefined error list	U8	ro	0x00		Fehler in der Liste (bis zu 8)
	18	History errors	U32	ro	0x00000000		Fehler traten gemäß der Fehlercodeliste auf, der letzte Fehler ist im Subindex
0x1005	0	COB ID Sync object	U32	rw	0x00000080	Х	Sensor erzeugt keine Synchronisationsnachricht (Bit 30 =0) 11-Bit-Bezeichnungssystem (Bit 29=0)
0x1008	0	Device name	STR	ro	GIM140R		Gerätebezeichnung (siehe Abschnitt 2.1)
0x1009	0	HW version	STR	ro	1.0		Hardwareversion
0x100A	0	FW version	STR	ro	1.30		Softwareversion (ASCII-Zeichen d.h. Version 1.00 = 31 56 30 30) (! Achtung, wie im segmentierten Modus angegeben: Senden 60 00 00 00 00 00 00 00 00 00 nach dem Befehl 40 0A 10 00 00 00 00 00 00 00, um diese Zeichenfolge zu sehen)
0x1010	0	Numbers of save- options	U8	ro	0x01		
	1	"save all parameters"	U32	rw	0x00000001	Х	Parameter werden nur durch Schreiben der Zeichenfolge "save" (0x73-0x61-0x76-0x65) gespeichert.
0x1011	0	Numbers of restore- options	U8	ro	0x01		
	1	Reset for all parameters	U32	rw	0x0000001	X	Wenn die Zeichenfolge "load" (0x6C-0x6F-0x61-0x64) eingegeben wird, werden die Parameter den Werkseinstellungen zugeordnet und sind nach dem nächsten Reset gültig.
0x1014	0	COB ID Emergency	U32	rw	0x000000008 0+ID	Х	Bit 30 = 1 Der Sensor erzeugt EMCY-Meldung
0x1015	0	Inhibit time Emergency	U16	rw	0x0000	Х	Sperrzeit für die EMCY-Botschaft. Der Wert ist in Vielfachen von 100 µs anzugeben. Der Wert 0 deaktiviert die Sperrzeit.
0x1017	0	Producer heartbeat time	U16	rw	0x0000	Х	Zeitintervall [msec], in dem der Sensor einen Producer- Heartbeat erzeugt
0x1018	0	Numbers of identity-options	U8	ro	0x04		
	1	Vendor ID	U32	ro	0x000000005 F		0x00EC - Produkte der Serie GIM
	2	Product code	U32	ro	0x00000540		Wie in Abschnitt 2.1 beschrieben
	3	Revision number	U32	ro	0x00000000		
	4	Serial number	U32	ro	-		Abhängig von der Seriennummer des Produkts
0x1200	0	Server SDOs	U8	ro	0x02		
	1	COB ID Rx SDO	U32	ro	0x600 + Kennung		Bit 31=0 -> gültiges SDO
	2	COB ID Tx SDO	U32	ro	0x580 +ID		Bit 31=0 -> gültiges SDO

Objekt	Sub- Index	Name	Format	Zu- griff	Default	Save	Beschreibung
0x1800	0	TPDO1	U8	ro	0x05		Anzahl der Einträge TPDO1
	1	COB ID TPDO1	U32	rw	0x180+Node ID	Х	Bit 31 = 0 -> TPDO aktiviert Bit 31 = 1 -> TPDO nicht aktiviert (nicht übertragen)
	2	Transmission type	U8	rw	0xFE	Х	Übertragungsart (synchron/asynchron)
	3	Inhibit time	U16	rw	0x0000	Х	Mindestintervallzeit zwischen aufeinanderfolgenden TPDOs
	5	Event time TPDO1	U16	rw	0x0064	Х	Wird verwendet, wenn 1800.02 0xFE oder 0xFF ist
0x1A00	0	TPDO1 mapping	U8	ro	0x03		Anzahl der in TPDO1 integrierten Objekte
	1	Index in obj directory	U16	ro	0x65110010		Temperatur
	2	Index in obj directory	U16	ro	0x60100010		X-Achse/Vertikal
	3	Index in obj directory	U16	ro	0x60200010		Y-Achse
0x1F80	0	NMT Startup	U32	rw	-	Х	Konfiguration des Startverhaltens eines Geräts, das in der Lage ist, den NMT durchzuführen

11.2 Hersteller-spezifische Parameter

Objekt	Sub- Index	Name	Format	Zu- griff	Default	Save	Beschreibung
0x2100	0	Baud rate	U8	rw	0x03	Х	0=1000 kbits/s 1=800 kbits/s
							2=500 kbits/s
							3=250 kbits/s
							4=125 kbits/s
							5=100 kbits/s
							6=50 kbits/s
							7=20 kbits/s
							8=10kbits/s
							Die Baudrate wird nach einem Reset oder Einschalten aktiviert (wenn der Parameter im nichtflüchtigen Speicher gespeichert wird)
0x2101	0	Node ID	U8	rw	0x01	Х	0x010x7F
0x2195	0	Fw version	U16	ro, m	0x0000		Obj. 0x100A in 16 Bit
0x2196	0	String Customer	U32	rw, m	0x00000000	Х	4 Byte reservierter Bereich für beliebige Einträge
0x2197	0	Dummy double word	U32	rw, m	0x00000000	Х	4 Byte reservierter Bereich zur Erstellung von PDO mit dynamischem Mapping
0x2198	0	Dummy word	U16	rw, m	0x0000	Х	Byte reservierter Bereich zur Erstellung von PDO mit dynamischem Mapping
0x2199	0	Dummy byte	U8	rw, m	0x00	Х	Byte reservierter Bereich zur Erstellung von PDO mit dynamischem Mapping
0x2603	0	Digital Filter Configuration	U16	rw	0x0014	Х	Frequenz-Grenzwert
0x3000	0	Baud rate	U8	rw	0x03	Х	wie Objekt 2100
0x3001	0	Node Id	U8	rw	0x01	Х	wie Objekt 2101
0x5FF0	0	Acceleration	U8	ro			
	1	X axis raw acceleration	I16	ro, m			
	2	Y axis raw acceleration	I16	ro, m			
	3	Z axis raw acceleration	I16	ro, m			
	4	X axis filtered acceleration	I16	ro, m			
	5	Y axis filtered acceleration	I16	ro, m			
	6	Z axis filtered acceleration	I16	ro, m			

11.3 Geräteprofil-spezifische Parameter (Neigungssensorprofil CiA DS 410)

Objekt	Sub- Index	Name	Format	Zu- griff	Default	Save	Beschreibung
0x6000	0	Resolution	U16	rw	0x0064	Х	Dieses Objekt gibt die Auflösung der Objekte Slope long16-bit (Objekt 6010h) und Slope lateral16-bit (Objekt 6020h) basierend auf 0,001° an. Diese Auflösung gilt auch für die entsprechenden 32-Bit
							Objekte (6110h und 6120h).
0x6010	0	Slope long 16-bit	l16	ro, m	0x0000		Dieses Objekt liefert den 16-Bit-Neigungswert der Längsachse. Der Wert ist in Grad (Winkel) in der in Objekt 6000h
0x6011	0	Slope long 16-bit operating parameter	U8	rw	0x02	X	hinterlegten Auflösung angegeben. Wenn die Skalierung aktiviert ist, wird der Wert Slope long16-bit entsprechend der folgenden Gleichung berechnet: Slope long16-bit = physikalisch gemessener Winkel + Differential slope long16-bit offset + Slope long16-bit
							offset. Wenn die Skalierung deaktiviert ist, muss der Wert Slope long16 gleich dem physikalisch gemessenen Winkel sein.
0x6012	0	Slope long 16-bit preset value	I16	rw	0x0000	X	Der Zugriff auf dieses Objekt mittels SDO muss den tatsächlichen Wert der Längsneigung direkt auf einen gewünschten Wert der Längsneigung setzen. Der berechnete Applikations-Offset der Längsneigung Wert wird in Slope long16 offset (Objekt 6013h) angegeben. Der Slope long16-bit offset wird in Bezug auf Objekt 6014h berechnet. Der Wert soll in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung angegeben werden.
0x6013	0	Slope long 16-bit offset	116	rw	0x0000	X	Dieses Objekt zeigt den Anwendungsversatz der Längsachse an. Der Wert ist in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung anzugeben. Die folgende Gleichung ist anzuwenden: Slope long16-bit offset = Slope long16-bit preset bei tacc - Slope physikalisch gemessen bei tacc - Differential slope long16-bit offset (tacc = Zeit beim Zugriff auf Objekt 6012h)
0x6014	0	Differential slope long 16-bit offset	l16	rw	0x0000	X	Dieses Objekt soll den Wert Slope long16-bit (Objekt 6010h) unabhängig von Slope long16-bit preset value (Objekt 6012h) und Slope long16-bit offset (Objekt 6013h) verschieben. Der Wert soll in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung angegeben werden.
0x6020	0	Slope lateral 16-bit (for 2-dimensional sensor only)	l16	ro, m	0x0000		Dieses Objekt liefert den 16-Bit-Neigungswert der Querachse. Der Wert wird in Grad (Winkel) mit der in Objekt 6000h hinterlegten Auflösung ausgegeben.
0x6021	0	Slope lateral 16-bit operating parameter (for 2-dimensional sensor only)	U8	rw	0x02	X	Wenn die Skalierung aktiviert ist, wird der Wert Slope lateral16-bit entsprechend der folgenden Gleichung berechnet: Slope lateral16-bit = physikalisch gemessener Winkel + Differential slope lateral16-bit offset + Slope lateral16-bit offset Wenn die Skalierung deaktiviert ist, muss der Wert Slope lateral16-bit gleich dem physikalisch gemessenen Winkel sein.
0x6022	0	Slope lateral 16-bit preset value (for 2-dimensional sensor only)	I16	rw	0x0000	х	Beim Zugriff auf dieses Objekt mittels SDO wird der tatsächliche Wert der Querneigung direkt auf einen gewünschten Wert der Querneigung gesetzt. Der berechnete Applikations-Offset des lateralen Neigungswertes ist in Slope lateral16-bit offset (Objekt 6023h) angegeben. Der Slope laterale16-bit offset wird in Bezug auf Objekt 6024h berechnet. Der Wert soll in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung angegeben werden.
0x6023	0	Slope lateral 16bit offset (for 2-dimensional sensor only)	l16	rw	0x0000	Х	Dieses Objekt zeigt den Anwendungsversatz der Querachse an. Der Wert soll in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung angegeben werden. Die folgende Gleichung ist anzuwenden:

							Slope lateral16-bit offset = Slope lateral16-bit preset value bei tacc - physikalisch gemessene Steigung bei tacc – Differential slope lateral16-bit offset
							(tacc = Zeit beim Zugriff auf Objekt 6022h)
0x6024	0	Differential slope lateral 16bit offset (for 2-dimensional sensor only)	I16	rw	0x0000	Х	Dieses Objekt soll den Wert von Slope lateral16-bit (Objekt 6020h) unabhängig von Slope lateral16-bit preset value (Objekt 6022h) und Slope lateral16-bit offset (Objekt 6023h) verschieben. Der Wert soll in Grad (Winkel) in der in Objekt 6000h hinterlegten Auflösung angegeben werden.
0x6110	0	Slope long 32-bit	132	ro. m	0x00000000		Siehe Beschreibung von Objekt 6010h
0x6111	0	Slope long 32-bit operating parameter	U8	rw	0x02	Х	Siehe Beschreibung von Objekt 6011h
0x6112	0	Slope long 32-bit preset value	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6012h
0x6113	0	Slope long 32-bit offset	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6013h
0x6114	0	Differential slope long 32-bit offset	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6014h
0x6120	0	Slope lateral 32-bit (for 2-dimensional sensor only)	132	ro, m	0x00000000		Siehe Beschreibung von Objekt 6020h
0x6121	0	Slope lateral 32-bit operating parameter (for 2-dimensional sensor only)	U8	rw	0x02	Х	Siehe Beschreibung von Objekt 6021h
0x6122	0	Slope lateral 32-bit preset value (for 2-dimensional sensor only)	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6022h
0x6123	0	Slope lateral 32-bit offset (for 2-dimensional sensor only)	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6023h
0x6124	0	Differential slope lateral 32-bit offset (for 2-dimensional sensor only)	132	rw	0x00000000	Х	Siehe Beschreibung von Objekt 6024h
0x6511	0	Device temperature	l16	ro, m	0x0000		Temperatur im Inneren des Neigungssensors

12 Anschlussbelegung

12.1 Kabel mit Stecker M12, 5-polig

Pin	Belegung	Beschreibung	Steckverbinder
1	CAN_GND	Masseanschluss bezogen auf CAN	5_3
2	+Vs	Betriebsspannung	4(00)2
3	GND	Masseanschluss bezogen auf +Vs	1
4	CAN_H	CAN Bus Signal (dominant High)	Tippophdose M12 (Stift)
5	CAN_L	CAN Bus Signal (dominant Low)	Flanschdose M12 (Stift), A-codiert

12.2 Kabel mit Stecker 2xM12, 5-polig

Pin	Belegung	Beschreibung	Steckverbinder	
1	CAN_GND	Masseanschluss bezogen auf CAN	5 3 3 5	
2	+Vs	Betriebsspannung	2 2 0 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	GND	Masseanschluss bezogen auf +Vs		
4	CAN_H	CAN Bus Signal (dominant High)		
5	CAN_L	CAN Bus Signal (dominant Low)	Flanschdose M12 (Stift/Buchse), A-codiert	

12.3 Kabel

Aderfarbe	Belegung	Beschreibung			
White	GND	Masseanschluss bezogen auf +Vs			
Brown	+Vs	Betriebsspannung			
Green	CAN_H	CAN Bus Signal (dominant High)			
Yellow	CAN_L	CAN Bus Signal (dominant Low)			
Grey	CAN_GND	Masseanschluss bezogen auf CAN			
Kabeldaten:	Kabeldaten: 5 x 0,5 mm2				

Klemmen mit gleicher Bezeichnung sind intern verbunden und funktionsidentisch. Diese internen Klemmverbindungen Vs-Vs / GND-GND dürfen mit max. jeweils 0,5 A belastet werden.